新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
Mixed Models : Theory and Applications with R
发布日期:2015-11-30  浏览

Mixed Models : Theory and Applications with R

[BOOK DESCRIPTION]


Praise for the First Edition "This book will serve to greatly complement the growing number of texts dealing with mixed models, and I highly recommend including it in one's personal library." -Journal of the American Statistical Association Mixed modeling is a crucial area of statistics, enabling the analysis of clustered and longitudinal data. Mixed Models: Theory and Applications with R, Second Edition fills a gap in existing literature between mathematical and applied statistical books by presenting a powerful examination of mixed model theory and application with special attention given to the implementation in R. The new edition provides in-depth mathematical coverage of mixed models' statistical properties and numerical algorithms, as well as nontraditional applications, such as regrowth curves, shapes, and images. The book features the latest topics in statistics including modeling of complex clustered or longitudinal data, modeling data with multiple sources of variation, modeling biological variety and heterogeneity, Healthy Akaike Information Criterion (HAIC), parameter multidimensionality, and statistics of image processing.Mixed Models: Theory and Applications with R, Second Edition features unique applications of mixed model methodology, as well as: * Comprehensive theoretical discussions illustrated by examples and figures * Over 300 exercises, end-of-section problems, updated data sets, and R subroutines * Problems and extended projects requiring simulations in R intended to reinforce material * Summaries of major results and general points of discussion at the end of each chapter * Open problems in mixed modeling methodology, which can be used as the basis for research or PhD dissertations Ideal for graduate-level courses in mixed statistical modeling, the book is also an excellent reference for professionals in a range of fields, including cancer research, computer science, and engineering.


[TABLE OF CONTENTS]

Preface                                            xvii
Preface to the Second Edition                      xix
R Software and Functions                           xx
Data Sets                                          xxii
Open Problems in Mixed Models                      xxiii
    1 Introduction: Why Mixed Models?              1    (40)
      1.1 Mixed effects for clustered data         2    (2)
      1.2 ANOVA, variance components, and the      4    (2)
      mixed model
      1.3 Other special cases of the mixed         6    (1)
      effects model
      1.4 Compromise between Bayesian and          7    (2)
      frequentist approaches
      1.5 Penalized likelihood and mixed effects   9    (2)
      1.6 Healthy Akaike information criterion     11   (2)
      1.7 Penalized smoothing                      13   (3)
      1.8 Penalized polynomial fitting             16   (2)
      1.9 Restraining parameters, or what to eat   18   (2)
      1.10 Ill-posed problems, Tikhonov            20   (3)
      regularization, and mixed effects
      1.11 Computerized tomography and linear      23   (3)
      image reconstruction
      1.12 GLMM for PET                            26   (3)
      1.13 Maple leaf shape analysis               29   (2)
      1.14 DNA Western blot analysis               31   (2)
      1.15 Where does the wind blow?               33   (3)
      1.16 Software and books                      36   (1)
      1.17 Summary points                          37   (4)
    2 MLE for the LME Model                        41   (76)
      2.1 Example: weight versus height            42   (3)
        2.1.1 The first R script                   43   (2)
      2.2 The model and log-likelihood functions   45   (15)
        2.2.1 The model                            45   (3)
        2.2.2 Log-likelihood functions             48   (1)
        2.2.3 Dimension-reduction formulas         49   (4)
        2.2.4 Profile log-likelihood functions     53   (2)
        2.2.5 Dimension-reduction GLS estimate     55   (1)
        2.2.6 Restricted maximum likelihood        56   (3)
        2.2.7 Weight versus height (continued)     59   (1)
      2.3 Balanced random-coefficient model        60   (4)
      2.4 LME model with random intercepts         64   (8)
        2.4.1 Balanced random-intercept model      67   (4)
        2.4.2 How random effect affects the        71   (1)
        variance of MLE
      2.5 Criterion for MLE existence              72   (2)
      2.6 Criterion for the positive               74   (3)
      definiteness of matrix D
        2.6.1 Example of an invalid LME model      75   (2)
      2.7 Pre-estimation bounds for variance       77   (2)
      parameters
      2.8 Maximization algorithms                  79   (2)
      2.9 Derivatives of the log-likelihood        81   (1)
      function
      2.10 Newton-Raphson algorithm                82   (3)
      2.11 Fisher scoring algorithm                85   (3)
        2.11.1 Simplified FS algorithm             86   (1)
        2.11.2 Empirical FS algorithm              86   (1)
        2.11.3 Variance-profile FS algorithm       87   (1)
      2.12 EM algorithm                            88   (5)
        2.12.1 Fixed-point algorithm               92   (1)
      2.13 Starting point                          93   (2)
        2.13.1 FS starting point                   93   (1)
        2.13.2 FP starting point                   94   (1)
      2.14 Algorithms for restricted MLE           95   (1)
        2.14.1 Fisher scoring algorithm            95   (1)
        2.14.2 EM algorithm                        96   (1)
      2.15 Optimization on nonnegative definite    96   (11)
      matrices
        2.15.1 How often can one hit the           97   (1)
        boundary?
        2.15.2 Allow matrix D to be not            98   (5)
        nonnegative definite
        2.15.3 Force matrix D to stay              103  (1)
        nonnegative definite
        2.15.4 Matrix D reparameterization         104  (1)
        2.15.5 Criteria for convergence            105  (2)
      2.16 lmeFS and lme in R                      107  (4)
      2.17 Appendix: proof of the existence of     111  (3)
      MLE
      2.18 Summary points                          114  (3)
    3 Statistical Properties of the LME Model      117  (68)
      3.1 Introduction                             117  (1)
      3.2 Identifiability of the LME model         117  (3)
        3.2.1 Linear regression with random        119  (1)
        coefficients
      3.3 Information matrix for variance          120  (11)
      parameters
        3.3.1 Efficiency of variance parameters    129  (2)
        for balanced data
      3.4 Profile-likelihood confidence            131  (2)
      intervals
      3.5 Statistical testing of the presence      133  (4)
      of random effects
      3.6 Statistical properties of MLE            137  (8)
        3.6.1 Small-sample properties              137  (3)
        3.6.2 Large-sample properties              140  (4)
        3.6.3 ML and RML are asymptotically        144  (1)
        equivalent
      3.7 Estimation of random effects             145  (6)
        3.7.1 Implementation in R                  148  (3)
      3.8 Hypothesis and membership testing        151  (3)
        3.8.1 Membership test                      152  (2)
      3.9 Ignoring random effects                  154  (3)
      3.10 MINQUE for variance parameters          157  (9)
        3.10.1 Example: linear regression          158  (2)
        3.10.2 MINQUE for σ                  160  (2)
        3.10.3 MINQUE for D*                       162  (3)
        3.10.4 Linear model with random            165  (1)
        intercepts
        3.10.5 MINQUE for the balanced model       165  (1)
        3.10.6 ImevarMINQUE function               166  (1)
      3.11 Method of moments                       166  (5)
        3.11.1 ImevarMM function                   171  (1)
      3.12 Variance least squares estimator        171  (5)
        3.12.1 Unbiased VLS estimator              173  (1)
        3.12.2 Linear model with random            174  (1)
        intercepts
        3.12.3 Balanced desig                      174  (1)
        3.12.4 VLS as the first iteration of ML    175  (1)
        3.12.5 ImevarUVLS function                 175  (1)
      3.13 Projection on D+ space                  176  (1)
      3.14 Comparison of the variance parameter    176  (4)
      estimation
        3.14.1 Imesim function                     179  (1)
      3.15 Asymptotically efficient estimation     180  (1)
      for β
      3.16 Summary points                          181  (4)
    4 Growth Curve Model and Generalizations       185  (60)
      4.1 Linear growth curve model                185  (16)
        4.1.1 Known matrix D                       187  (2)
        4.1.2 Maximum likelihood estimation        189  (3)
        4.1.3 Method of moments for variance       192  (4)
        parameters
        4.1.4 Two-stage estimation                 196  (1)
        4.1.5 Special growth curve models          196  (4)
        4.1.6 Unbiasedness and efficient           200  (1)
        estimation for β
      4.2 General linear growth curve model        201  (18)
        4.2.1 Example: Calcium supplementation     202  (2)
        for bone gain
        4.2.2 Variance parameters are known        204  (3)
        4.2.3 Balanced model                       207  (1)
        4.2.4 Likelihood-based estimation          208  (5)
        4.2.5 MM estimator for variance            213  (1)
        parameters
        4.2.6 Two-stage estimator and              214  (1)
        asymptotic properties
        4.2.7 Analysis of misspecification         215  (4)
      4.3 Linear model with linear covariance      219  (14)
      structure
        4.3.1 Method of maximum likelihood         220  (2)
        4.3.2 Variance least squares               222  (1)
        4.3.3 Statistical properties               223  (1)
        4.3.4 LME model for longitudinal           224  (5)
        autocorrelated data
        4.3.5 Multidimensional LME model           229  (4)
      4.4 Robust linear mixed effects model        233  (8)
        4.4.1 Robust estimation of the location    235  (3)
        parameter with estimated σ and c
        4.4.2 Robust linear regression with        238  (1)
        estimated threshold
        4.4.3 Robust LME model                     239  (1)
        4.4.4 Alternative robust functions         239  (1)
        4.4.5 Robust random effect model           240  (1)
      4.5 Appendix: derivation of the MM           241  (1)
      estimator
      4.6 Summary points                           242  (3)
    5 Meta-analysis Model                          245  (46)
      5.1 Simple meta-analysis model               246  (27)
        5.1.1 Estimation of random effects         248  (1)
        5.1.2 Maximum likelihood estimation        248  (5)
        5.1.3 Quadratic unbiased estimation for    253  (7)
        Σ
        5.1.4 Statistical inference                260  (6)
        5.1.5 Robust/median meta-analysis          266  (5)
        5.1.6 Random effect coefficient of         271  (2)
        determination
      5.2 Meta-analysis model with covariates      273  (5)
        5.2.1 Maximum likelihood estimation        274  (3)
        5.2.2 Quadratic unbiased estimation for    277  (1)
        Σ
        5.2.3 Hypothesis testing                   278  (1)
      5.3 Multivariate meta-analysis model         278  (11)
        5.3.1 The model                            280  (3)
        5.3.2 Maximum likelihood estimation        283  (2)
        5.3.3 Quadratic estimation of the          285  (3)
        heterogeneity matrix
        5.3.4 Test for homogeneity                 288  (1)
      5.4 Summary points                           289  (2)
    6 Nonlinear Marginal Model                     291  (40)
      6.1 Fixed matrix of random effects           292  (13)
        6.1.1 Log-likelihood function              293  (2)
        6.1.2 nls function in R                    295  (1)
        6.1.3 Computational issues of nonlinear    296  (1)
        least squares
        6.1.4 Distribution-free estimation         297  (1)
        6.1.5 Testing for the presence of          298  (1)
        random effects
        6.1.6 Asymptotic properties                298  (1)
        6.1.7 Example: log-Gompertz growth curve   299  (6)
      6.2 Varied matrix of random effects          305  (11)
        6.2.1 Maximum likelihood estimation        305  (3)
        6.2.2 Distribution-free variance           308  (1)
        parameter estimation
        6.2.3 GEE and iteratively reweighted       309  (1)
        least squares
        6.2.4 Example: logistic curve with         310  (6)
        random asymptote
      6.3 Three types of nonlinear marginal        316  (5)
      models
        6.3.1 Type I nonlinear marginal model      317  (2)
        6.3.2 Type II nonlinear marginal model     319  (1)
        6.3.3 Type III nonlinear marginal model    319  (1)
        6.3.4 Asymptotic properties under          320  (1)
        distribution misspecification
      6.4 Total generalized estimating             321  (7)
      equations approach
        6.4.1 Robust feature of total GEE          323  (1)
        6.4.2 Expected Newton-Raphson algorithm    323  (1)
        for total GEE
        6.4.3 Total GEE for the mixed effects      324  (1)
        model
        6.4.4 Total GEE for the LME model          324  (1)
        6.4.5 Example (continued): log-Gompertz    325  (1)
        curve
        6.4.6 Photodynamic tumor therapy           326  (2)
      6.5 Summary points                           328  (3)
    7 Generalized Linear Mixed Models              331  (102)
      7.1 Regression models for binary data        332  (23)
        7.1.1 Approximate relationship between     336  (2)
        logit and probit
        7.1.2 Computation of the                   338  (12)
        logistic-normal integral
        7.1.3 Gauss-Hermite numerical              350  (2)
        quadrature for multidimensional
        integrals in R
        7.1.4 Log-likelihood and its numerical     352  (1)
        properties
        7.1.5 Unit step algorithm                  353  (2)
      7.2 Binary model with subject-specific       355  (7)
      intercept
        7.2.1 Consequences of ignoring a random    357  (1)
        effect
        7.2.2 ML logistic regression with a        358  (1)
        fixed subject-specific intercept
        7.2.3 Conditional logistic regression      359  (3)
      7.3 Logistic regression with random          362  (20)
      intercept
        7.3.1 Maximum likelihood                   362  (6)
        7.3.2 Fixed sample likelihood              368  (3)
        approximation
        7.3.3 Quadratic approximation              371  (1)
        7.3.4 Laplace approximation to the         371  (3)
        likelihood
        7.3.5 VARLINK estimation                   374  (2)
        7.3.6 Beta-binomial model                  376  (2)
        7.3.7 Statistical test of homogeneity      378  (3)
        7.3.8 Asymptotic properties                381  (1)
      7.4 Probit model with random intercept       382  (4)
        7.4.1 Laplace and PQL approximations       382  (1)
        7.4.2 VARLINK estimation                   383  (1)
        7.4.3 Heckman method for the probit        383  (1)
        model
        7.4.4 Generalized estimating equations     384  (2)
        approach
        7.4.5 Implementation in R                  386  (1)
      7.5 Poisson model with random intercept      386  (15)
        7.5.1 Poisson regression for count data    387  (1)
        7.5.2 Clustered count data                 388  (1)
        7.5.3 Fixed intercepts                     389  (1)
        7.5.4 Conditional Poisson regression       390  (1)
        7.5.5 Negative binomial regression         391  (3)
        7.5.6 Normally distributed intercepts      394  (2)
        7.5.7 Exact GEE for any distribution       396  (1)
        7.5.8 Exact GEE for balanced count data    397  (1)
        7.5.9 Heckman method for the Poisson       398  (1)
        model
        7.5.10 Tests for overdispersion            399  (1)
        7.5.11 Implementation in R                 400  (1)
      7.6 Random intercept model: overview         401  (1)
      7.7 Mixed models with multiple random        402  (10)
      effects
        7.7.1 Multivariate Laplace approximation   403  (1)
        7.7.2 Logistic regression                  403  (4)
        7.7.3 Probit regression                    407  (1)
        7.7.4 Poisson regression                   408  (2)
        7.7.5 Homogeneity tests                    410  (2)
      7.8 GLMM and simulation methods              412  (4)
        7.8.1 General form of GLMM via the         412  (1)
        exponential family
        7.8.2 Monte Carlo for ML                   413  (1)
        7.8.3 Fixed sample likelihood approach     413  (3)
      7.9 GEE for clustered marginal GLM           416  (8)
        7.9.1 Variance least squares               418  (2)
        7.9.2 Limitations of the GEE approach      420  (2)
        7.9.3 Marginal or conditional model?       422  (1)
        7.9.4 Implementation in R                  423  (1)
      7.10 Criteria for MLE existence for a        424  (5)
      binary model
      7.11 Summary points                        429  (4)
    8 Nonlinear Mixed Effects Model                433  (54)
      8.1 Introduction                             433  (1)
      8.2 The model                                434  (3)
      8.3 Example: height of girls and boys        437  (2)
      8.4 Maximum likelihood estimation            439  (3)
      8.5 Two-stage estimator                      442  (6)
        8.5.1 Maximum likelihood estimation        445  (1)
        8.5.2 Method of moments                    445  (1)
        8.5.3 Disadvantage of two-stage            446  (1)
        estimation
        8.5.4 Further discussion                   446  (1)
        8.5.5 Two-stage method in the presence     447  (1)
        of a common parameter
      8.6 First-order approximation                448  (2)
        8.6.1 GEE and MLE                          448  (1)
        8.6.2 Method of moments and VLS            449  (1)
      8.7 Lindstrom-Bates estimator                450  (6)
        8.7.1 What if matrix D is not positive     452  (1)
        definite?
        8.7.2 Relation to the two-stage            452  (1)
        estimator
        8.7.3 Computational aspects of             453  (1)
        penalized least squares
        8.7.4 Implementation in R: the function    454  (2)
        nlme
      8.8 Likelihood approximations                456  (3)
        8.8.1 Linear approximation of the          456  (1)
        likelihood at zero
        8.8.2 Laplace and PQL approximations       457  (2)
      8.9 One-parameter exponential model          459  (7)
        8.9.1 Maximum likelihood estimator         459  (1)
        8.9.2 First-order approximation            460  (1)
        8.9.3 Two-stage estimator                  461  (2)
        8.9.4 Lindstrom-Bates estimator            463  (3)
      8.10 Asymptotic equivalence of the TS and    466  (2)
      LB estimators
      8.11 Bias-corrected two-stage estimator      468  (2)
      8.12 Distribution misspecification           470  (3)
      8.13 Partially nonlinear marginal mixed      473  (1)
      model
      8.14 Fixed sample likelihood approach        474  (2)
        8.14.1 Example: one-parameter              475  (1)
        exponential model
      8.15 Estimation of random effects and        476  (2)
      hypothesis testing
        8.15.1 Estimation of the random effects    476  (1)
        8.15.2 Hypothesis testing for the NLME     477  (1)
        model
      8.16 Example (continued)                     478  (2)
      8.17 Practical recommendations               480  (1)
      8.18 Appendix: Proof of theorem on           481  (3)
      equivalence
      8.19 Summary points                          484  (3)
    9 Diagnostics and Influence Analysis           487  (52)
      9.1 Introduction                             487  (1)
      9.2 Influence analysis for linear            488  (3)
      regression
      9.3 The idea of infinitesimal influence      491  (2)
        9.3.1 Data influence                       491  (1)
        9.3.2 Model influence                      492  (1)
      9.4 Linear regression model                  493  (17)
        9.4.1 Influence of the dependent           494  (1)
        variable
        9.4.2 Influence of the continuous          495  (2)
        explanatory variable
        9.4.3 Influence of the binary              497  (1)
        explanatory variable
        9.4.4 Influence on the predicted value     497  (1)
        9.4.5 Case or group deletion               498  (2)
        9.4.6 R code                               500  (1)
        9.4.7 Influence on regression              501  (2)
        characteristics
        9.4.8 Example 1: Women's body fat          503  (4)
        9.4.9 Example 2: gypsy moth study          507  (3)
      9.5 Nonlinear regression model               510  (5)
        9.5.1 Influence of the dependent           510  (1)
        variable on the LSE
        9.5.2 Influence of the explanatory         510  (1)
        variable on the LSE
        9.5.3 Influence on the predicted value     511  (1)
        9.5.4 Influence of case deletion           511  (1)
        9.5.5 Example 3: logistic growth curve     512  (3)
        model
      9.6 Logistic regression for binary outcome   515  (9)
        9.6.1 Influence of the covariate on the    516  (1)
        MLE
        9.6.2 Influence on the predicted           516  (1)
        probability
        9.6.3 Influence of the case deletion on    517  (1)
        the MLE
        9.6.4 Sensitivity to misclassification     517  (5)
        9.6.5 Example: Finney data                 522  (2)
      9.7 Influence of correlation structure       524  (1)
      9.8 Influence of measurement error           525  (3)
      9.9 Influence analysis for the LME model     528  (6)
        9.9.1 Example: Weight versus height        532  (2)
      9.10 Appendix: MLE derivative with           534  (1)
      respect to Σ
      9.11 Summary points                          535  (4)
    10 Tumor Regrowth Curves                       539  (38)
      10.1 Survival curves                         541  (2)
      10.2 Double-exponential regrowth curve       543  (14)
        10.2.1 Time to regrowth, TR                546  (1)
        10.2.2 Time to reach specific tumor        547  (1)
        volume, T*
        10.2.3 Doubling time, TD                   547  (1)
        10.2.4 Statistical model for regrowth      548  (1)
        10.2.5 Variance estimation for tumor       549  (1)
        regrowth outcomes
        10.2.6 Starting values                     550  (1)
        10.2.7 Example: chemotherapy treatment     551  (6)
        comparison
      10.3 Exponential growth with fixed           557  (6)
      regrowth time
        10.3.1 Statistical hypothesis testing      558  (1)
        10.3.2 Synergistic or supra-additive       558  (1)
        effect
        10.3.3 Example: combination of             559  (4)
        treatments
      10.4 General regrowth curve                  563  (1)
      10.5 Double-exponential transient            564  (7)
      regrowth curve
        10.5.1 Example: treatment of cellular      570  (1)
        spheroids
      10.6 Gompertz transient regrowth curve       571  (3)
        10.6.1 Example: tumor treated in mice      572  (2)
      10.7 Summary points                          574  (3)
    11 Statistical Analysis of Shape               577  (30)
      11.1 Introduction                            577  (2)
      11.2 Statistical analysis of random          579  (3)
      triangles
      11.3 Face recognition                        582  (1)
      11.4 Scale-irrelevant shape model            583  (4)
        11.4.1 Random effects scale-irrelevant     585  (1)
        shape model
        11.4.2 Scale-irrelevant shape model on     586  (1)
        the log scale
        11.4.3 Fixed or random size?               587  (1)
      11.5 Gorilla vertebrae analysis              587  (2)
      11.6 Procrustes estimation of the mean       589  (7)
      shape
        11.6.1 Polygon estimation                  592  (1)
        11.6.2 Generalized Procrustes model        592  (1)
        11.6.3 Random effects shape model          593  (1)
        11.6.4 Random or fixed (Procrustes)        594  (1)
        effects model?
        11.6.5 Maple leaf analysis                 594  (2)
      11.7 Fourier descriptor analysis             596  (9)
        11.7.1 Analysis of a star shape            596  (6)
        11.7.2 Random Fourier descriptor           602  (2)
        analysis
        11.7.3 Potato project                      604  (1)
      11.8 Summary points                          605  (2)
    12 Statistical Image Analysis                  607  (54)
      12.1 Introduction                            607  (3)
        12.1.1 What is a digital image?            608  (1)
        12.1.2 Image arithmetic                    609  (1)
        12.1.3 Ensemble and repeated               609  (1)
        measurements
        12.1.4 Image and spatial statistics        610  (1)
        12.1.5 Structured and unstructured         610  (1)
        images
      12.2 Testing for uniform lighting            610  (4)
        12.2.1 Estimating light direction and      612  (2)
        position
      12.3 Kolmogorov-Smirnov image comparison     614  (4)
        12.3.1 Kolmogorov-Smirnov test for         614  (1)
        image comparison
        12.3.2 Example: histological analysis      615  (3)
        of cancer treatment
      12.4 Multinomial statistical model for       618  (3)
      images
        12.4.1 Multinomial image comparison        620  (1)
      12.5 Image entropy                           621  (4)
        12.5.1 Reduction of a gray image to        623  (1)
        binary
        12.5.2 Entropy of a gray image and         623  (2)
        histogram equalization
      12.6 Ensemble of unstructured images         625  (13)
        12.6.1 Fixed-shift model                   626  (2)
        12.6.2 Random-shift model                  628  (3)
        12.6.3 Mixed model for gray images         631  (2)
        12.6.4 Two-stage estimation                633  (2)
        12.6.5 Schizophrenia MRI analysis          635  (3)
      12.7 Image alignment and registration        638  (12)
        12.7.1 Affine image registration           641  (1)
        12.7.2 Weighted sum of squares             642  (1)
        12.7.3 Nonlinear transformations           643  (1)
        12.7.4 Random registration                 643  (1)
        12.7.5 Linear image interpolation          644  (1)
        12.7.6 Computational aspects               645  (1)
        12.7.7 Derivative-free algorithm for       646  (1)
        image registration
        12.7.8 Example: clock alignment            647  (3)
      12.8 Ensemble of structured images           650  (2)
        12.8.1 Fixed affine transformations        650  (1)
        12.8.2 Random affine transformations       651  (1)
      12.9 Modeling spatial correlation            652  (6)
        12.9.1 Toeplitz correlation structure      654  (2)
        12.9.2 Simultaneous estimation of          656  (2)
        variance and transform parameters
      12.10 Summary points                         658  (3)
    13 Appendix: Useful Facts and Formulas         661  (20)
      13.1 Basic facts of asymptotic theory        661  (7)
        13.1.1 Central Limit Theorem               661  (1)
        13.1.2 Generalized Slutsky theorem         662  (2)
        13.1.3 Pseudo-maximum likelihood           664  (1)
        13.1.4 Estimating equations approach       665  (2)
        and the sandwich formula
        13.1.5 Generalized estimating equations    667  (1)
        approach
      13.2 Some formulas of matrix algebra         668  (4)
        13.2.1 Some matrix identities              668  (1)
        13.2.2 Formulas for generalized matrix     668  (1)
        inverse
        13.2.3 Vec and vech functions;             669  (1)
        duplication matrix
        13.2.4 Matrix differentiation              670  (2)
      13.3 Basic facts of optimization theory      672  (9)
        13.3.1 Criteria for unimodality            673  (1)
        13.3.2 Criteria for global optimum         674  (1)
        13.3.3 Criteria for minimum existence      674  (1)
        13.3.4 Optimization algorithms in          675  (3)
        statistics
        13.3.5 Necessary condition for             678  (3)
        optimization and criteria for
        convergence
References                                         681  (30)
Index                                              711

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上