Sector Field Mass Spectrometry for Elemental and Isotopic Analysis
[BOOK DESCRIPTION]
This book was triggered by the success story of sector field mass spectrometry in elemental and isotopic analysis since the first presentation of the mass spectrum of Ne a hundred years ago. The outstanding and unique features of sector field mass spectrometry - high sensitivity, high mass resolution and simultaneous multiple ion detection - have paved the way for its widespread and successful application across different scientific disciplines. Written, compiled and edited by world renowned experts, this book is intended to provide deep insight into the topic along with fundamental knowledge about elemental and isotopic analysis. Aimed at scientists in the field of natural and life sciences, instrument manufacturers, practitioners and graduate students, it provides solid information about the methodological background and analytical capabilities of sector field mass spectrometry. A detailed description of peculiarities and an overview of the most relevant applications making use of specific techniques employing sector field mass analysers (ICP-MS, GDMS, TIMS, SIMS and IRMS) are given, including a presentation of the currently available commercial instruments.This approach guarantees that readers are thoroughly introduced to and familiarized with the fascinating inter- and transdisciplinary field of sector field mass spectrometry.
[TABLE OF CONTENTS]
Acknowledgements xix
Author List xxiii
List of Abbreviations xliii
Chapter 1 Introduction 1 (9)
Thomas Prohaska
Andreas Zitek
1.1 Why Another Book on Mass Spectrometry? 1 (3)
1.1.1 The Success of Magnetic Sector 2 (1)
Field Mass Spectrometry
1.1.2 Magnetic Sector Field Devices for 3 (1)
Elemental and Isotopic Analysis
1.1.3 Metrology in Chemistry - The 3 (1)
Science of Measurement
1.1.4 A Wide Field for Modern Mass 4 (1)
Spectrometers with Unforeseen
Development
1.2 A New Book on Sector Field Mass 4 (1)
Spectrometry for Elemental And Isotopic
Analysis!
References 5 (5)
Chapter 2 History 10 (19)
Thomas Prohaska
2.1 Where it All Started 10 (1)
2.2 Cathode Rays and Kanalstrahlen 11 (2)
2.3 The First Mass Spectrometer and the 13 (4)
Determination of Isotopes
2.4 Towards Modern Mass Spectrometers 17 (4)
2.5 The Early Commercialisation of Mass 21 (2)
Spectrometry
2.6 The Last 50 Years - Development of 23 (1)
Mass Separators and Mastering the Ion
Sources
References 24 (5)
Fundamentals
Chapter 3 General Overview 29 (15)
Thomas Prohaska
3.1 (Multi-)element Analysis 33 (4)
3.2 Isotope Ratio Analysis 37 (1)
3.3 General Terminology and Abbreviations 38 (4)
of Mass Spectrometric Techniques
Described in this Book
References 42 (2)
Chapter 4 Technical Background 44 (53)
Lothar Rottmann
Norbert Jakubowski
Stefanie Konegger-Kappel
Ondrej Hanousek
Thomas Prohaska
4.1 Sample Introduction 46 (1)
4.2 Ion Sources 47 (7)
4.2.1 Plasma Ion Sources 48 (5)
4.2.2 Beam Sources 53 (1)
4.2.3 Thermal Ionisation Source 54 (1)
4.3 Sampling Interface 54 (1)
4.4 Electrostatic Lens System 55 (5)
4.5 Slit System (Entrance Slit and 60 (1)
Collector (Exit) Slit)
4.6 Magnetic Sector 61 (5)
4.7 Electric Sector 66 (2)
4.8 Double-Focusing Conditions and Sector 68 (6)
Field Geometries
4.9 Acquiring a Mass Spectrum 74 (1)
4.10 Flight Tube 75 (2)
4.11 Transfer, Zoom and Filter Optics 77 (1)
4.12 Detection Systems 78 (13)
4.12.1 Electron Multipliers 78 (7)
4.12.2 Daly Detector 85 (1)
4.12.3 Faraday Cup 85 (3)
4.12.4 Focal Plane Detectors 88 (3)
4.13 Vacuum System 91 (1)
References 92 (5)
Chapter 5 Mass Resolution 97 (10)
Ondrej Hanousek
Lothar Rottmann
Thomas Prohaska
5.1 Achieving High Mass Resolution with a 100 (1)
Magnetic Sector Field
5.2 Peak Shapes as a Result of Mass 100 (5)
Resolution
5.2.1 Abundance Sensitivity 104 (1)
5.2.2 Alternative Mass Separators to 104 (1)
Achieve High Mass Resolution
References 105 (2)
Chapter 6 Instrumental Isotopic Fractionation 107 (14)
Johanna Irrgeher
Thomas Prohaska
6.1 Instrumental Isotopic Fractionation 109 (3)
in ICP-MS
6.2 Instrumental Isotopic Fractionation 112 (1)
in LA-ICP-MS
6.3 Instrumental Isotopic Fractionation 113 (1)
in GDMS
6.4 Instrumental Isotopic Fractionation 114 (1)
in TIMS
6.5 Instrumental Isotopic Fractionation 115 (1)
in SIMS
6.6 Instrumental Isotopic Fractionation 116 (1)
in IRMS
References 117 (4)
Chapter 7 Interferences 121 (5)
Thomas Prohaska
7.1 Mathematical Correction Procedures 123 (1)
7.2 Sample Preparation and Introduction 124 (1)
Systems
7.3 Modified Instrumental Parameter 125 (1)
Reference 125 (1)
Chapter 8 Measurement Strategies 126 (26)
Johanna Irrgeher
Jochen Vogl
Jakob Santner
Thomas Prohaska
8.1 Calibration 127 (2)
8.2 Quantification 129 (11)
8.2.1 External Calibration 129 (2)
8.2.2 Standard Addition 131 (1)
8.2.3 Internal Normalisation 132 (1)
8.2.4 (Linear) Regression Analysis 133 (3)
8.2.5 Isotope Dilution 136 (4)
8.3 Isotope Ratio Measurements 140 (9)
8.3.1 Isotope Ratio Determination - 140 (5)
Calibration Strategies
8.3.2 Relative Notation vs. Absolute 145 (3)
Notation of Isotope Amount Ratios
8.3.3 Mass-Fractionation Correction Laws 148 (1)
References 149 (3)
Chapter 9 Chemical Imaging 152 (31)
Andreas Zitek
J駻?me Al駮n
Thomas Prohaska
9.1 Mass Spectrometric Imaging by SIMS 156 (9)
9.1.1 Key Aspects in the Image 157 (4)
Production Process using SIMS
9.1.2 Software Tools for Image 161 (1)
Production
9.1.3 Summary of the Picture-Creation 161 (2)
Process with SIMS
9.1.4 Applications 163 (2)
9.2 Imaging by Laser Ablation ICP-MS 165 (10)
9.2.1 Key Aspects in the Image 166 (5)
Production Process using LA-ICP-MS
9.2.2 Software Tools for Data 171 (1)
Processing and Image Production
9.2.3 Summary of the Picture Creation 172 (2)
Process with LA-ICP-MS
9.2.4 Applications 174 (1)
References 175 (8)
Chapter 10 Metrology 183 (16)
Johanna Irrgeher
Thomas Prohaska
10.1 General Terminology and Explanatory 185 (6)
Notes
10.2 Uncertainty 191 (3)
10.3 Traceability 194 (1)
10.4 Reference Materials 195 (1)
References 196 (3)
Magnetic Sector Field Instruments
Chapter 11 Magnetic Sector Field Instruments 199 (9)
Thomas Prohaska
Chapter 12 Inductively Coupled Plasma Mass 208 (111)
Spectrometry
Norbert Jakubowski
Monika Horsky
Peter H. Roos
Frank Vanhaecke
Thomas Prohaska
12.1 General 210 (4)
12.1.1 Single-Collector ICP-MS 211 (1)
12.1.2 Multicollector ICP-MS 212 (2)
12.2 Technical Background 214 (12)
12.2.1 Sample Introduction 215 (3)
12.2.2 Ion Source 218 (1)
12.2.3 Sampling Interface 219 (2)
12.2.4 Lens System 221 (1)
12.2.5 Sector Field Mass Separator 222 (1)
12.2.6 Slit System 223 (1)
12.2.7 Transfer and Filter Optics 223 (1)
12.2.8 Detection System 224 (1)
12.2.9 Vacuum System 225 (1)
12.3 Instrumentation 226 (8)
12.3.1 Single-Collector ICP-MS 227 (2)
12.3.2 Multicollector ICP-MS 229 (5)
12.4 Measurement Considerations 234 (9)
12.4.1 Spectral Interferences 234 (2)
12.4.2 Scan Conditions 236 (2)
(Single-Collector ICP-SFMS)
12.4.3 Mass Calibrations 238 (1)
(Single-Collector ICP-SFMS)
12.4.4 Isotope Ratio Analysis 239 (1)
12.4.5 Speciation Analysis 240 (2)
12.4.6 Beam Alignment (Multicollector 242 (1)
ICP-SFMS)
12.5 Applications of Sector Field ICP-MS 243 (52)
12.5.1 Applications of Single-Collector 245 (35)
ICP-SFMS
12.5.2 Applications of Multicollector 280 (15)
ICP-MS
References 295 (24)
Chapter 13 Glow Discharge Mass Spectrometry 319 (62)
Cornel Venzago
Jorge Pisonero
13.1 General 321 (3)
13.2 Technical Background 324 (12)
13.2.1 Glow Discharge Ion Source 324 (4)
13.2.2 Sampling Interface 328 (1)
13.2.3 Magnetic and Electric Sectors 329 (1)
13.2.4 Detection System 329 (1)
13.2.5 Instrumentation 330 (6)
13.3 Measurement Considerations 336 (26)
13.3.1 Spectral Interferences 336 (3)
13.3.2 Analytical Figures of Merit 339 (3)
13.3.3 Mass Accuracy 342 (1)
13.3.4 Quantification Strategies 343 (11)
13.3.5 Analysis of Nonconducting 354 (5)
Materials
13.3.6 Depth Profiling by GDMS 359 (3)
13.4 Applications 362 (10)
13.4.1 Applications in Environmental 364 (1)
Sciences
13.4.2 Applications in Industrial and 365 (6)
Material Research
13.4.3 Applications in Geological, 371 (1)
Cosmological and Radionuclide Research
References 372 (9)
Chapter 14 Thermal Ionisation Mass 381 (58)
Spectrometry
Stefan Burger
Jochen Vogl
Urs Kloetzli
Laurie Nunes
Mark Lavelle
14.1 General 383 (4)
14.2 Technical Background 387 (11)
14.2.1 Ion Source 387 (5)
14.2.2 Magnetic Sector and Electric 392 (1)
Sector
14.2.3 Flight Tube 392 (1)
14.2.4 Entrance Slit and Exit Slit 392 (1)
14.2.5 Transfer, Zoom, and Filter Optics 392 (1)
14.2.6 Detection System 392 (1)
14.2.7 Vacuum System 392 (1)
14.2.8 Instrumentation 393 (5)
14.3 Measurement Considerations 398 (4)
14.3.1 Mass Fractionation and 398 (1)
Temperature Profile
14.3.2 Calibration and Metrological 399 (1)
Traceability
14.3.3 Total Evaporation 400 (1)
14.3.4 Polyatomic and Molecular 401 (1)
Interferences
14.4 Applications 402 (26)
14.4.1 Applications in Life Sciences 402 (2)
14.4.2 Applications in Environmental 404 (3)
Sciences
14.4.3 Applications in Archaeometry and 407 (2)
Forensics
14.4.4 Applications in Industrial, 409 (4)
Nuclear Fuel Cycle and Material Research
14.4.5 Applications in Earth Sciences 413 (9)
14.4.6 Applications in Geology - 422 (1)
Radiogenic Isotope Geochemistry
14.4.7 Applications in Metrology 423 (4)
14.4.8 Metrological Applications in 427 (1)
Nuclear Science
References 428 (11)
Chapter 15 Secondary Ion Mass Spectrometry 439 (61)
Laure Sangely
Bernard Boyer
Emmanuel de Chambost
Nathalie Valle
Jean-Nicolas Audinot
Trevor Ireland
Michael Wiedenbeck
J駻?me Al駮n
Harald Jungnickel
Jean-Paul Barnes
Philippe Bienvenu
Uwe Breuer
15.1 General 441 (6)
15.1.1 Fundamentals of Secondary 441 (2)
Emission
15.1.2 Pre-Equilibrium and Equilibrium 443 (1)
State
15.1.3 Characteristics of Secondary Ions 444 (1)
15.1.4 Samples and Analytes 445 (1)
15.1.5 Analytical Capability 445 (2)
15.2 Technical Background 447 (11)
15.2.1 Sample Introduction 448 (1)
15.2.2 Ion Source 449 (2)
15.2.3 Ion Source Projection Column 451 (1)
15.2.4 Analytical Chamber 451 (1)
15.2.5 Transfer Optics 452 (1)
15.2.6 The Spectrometer 453 (1)
15.2.7 The Projection Optics 454 (1)
15.2.8 The Detection System 455 (2)
15.2.9 The Vacuum System 457 (1)
15.3 Instrumentation 458 (17)
15.3.1 History of Magnetic SIMS 458 (8)
Instrumentation
15.3.2 Instruments Currently on the 466 (9)
Market
15.4 Measurement Considerations 475 (5)
15.4.1 Mass Resolution Power 475 (1)
15.4.2 Interferences 476 (1)
15.4.3 Calibration 477 (2)
15.4.4 Matrix Effects 479 (1)
15.5 Applications 480 (12)
15.5.1 Applications in Geochemistry and 480 (6)
Cosmochemistry
15.5.2 Applications in Material Science 486 (3)
15.5.3 Applications in Nuclear 489 (2)
Safeguards
15.5.4 Applications in Life Sciences 491 (1)
References 492 (8)
Chapter 16 Gas Source Isotope Ratio Mass 500 (50)
Spectrometry (IRMS)
Willi A. Brand
Charles B. Douthitt
Francois Fourel
Rodrigo Maia
Carla Rodrigues
Cristina Maguas
Thomas Prohaska
16.1 General 503 (5)
16.2 Technical Background 508 (7)
16.2.1 Sample Preparation509 (2)
16.2.2 Sample Introduction 511 (1)
16.2.3 Ion Source 512 (2)
16.2.4 Sector Field Mass Analyser 514 (1)
16.2.5 Interface and Vacuum System 515 (1)
16.2.6 Detection System 515 (1)
16.3 Commercially Available Instruments 515 (8)
16.4 Measurement Considerations 523 (6)
16.4.1 Hydrogen 523 (1)
16.4.2 Oxygen 524 (1)
16.4.3 Water 525 (1)
16.4.4 Organic Carbon and Nitrogen 525 (1)
16.4.5 Measurement of Carbonates 526 (1)
16.4.6 Clumped Isotopes 527 (1)
16.4.7 Compounds with Sulfur 527 (1)
16.4.8 Halogens 528 (1)
16.4.9 Silicon, Selenium, Germanium, 528 (1)
Uranium
16.4.10 Corrections for Isobaric 529 (1)
Interferences
16.5 Selected Applications 529 (9)
16.5.1 Applications in Earth and 530 (2)
Geosciences, Paleoclimate Research and
Cosmochemistry
16.5.2 Applications in Environmental 532 (4)
Sciences
16.5.3 Applications in Archaeometry and 536 (1)
Forensics
16.5.4 Applications in Life Sciences 536 (1)
16.5.5 Applications in Industry, 537 (1)
Nuclear Research and Material Research
References 538 (12)
Chapter 17 Gas Source Isotope Ratio Mass 550 (32)
Spectrometry for the Analysis of Noble Gases
Sergey Assonov
Thomas Prohaska
17.1 General (Peculiarities of Noble-Gas 552 (4)
Mass Spectrometry)
17.2 Technical Background 556 (8)
17.2.1 Sampling, Extraction and 556 (3)
Purification
17.2.2 Sample Introduction 559 (2)
17.2.3 Ion Source 561 (1)
17.2.4 Sector Field Mass Analyser 562 (1)
17.2.5 Interface and Vacuum System 562 (1)
17.2.6 Detection System 563 (1)
17.3 Instrumentation 564 (4)
17.4 Measurement Considerations 568 (6)
17.4.1 Referencing Strategies and Data 568 (3)
Reporting
17.4.2 Noble-Gas Components (He, Ne, 571 (2)
Ar, Kr and Xe) and Component
Deconvolution
17.4.3 Tritium Determination by 3He 573 (1)
Accumulation
17.4.4 Isobaric Interferences and 573 (1)
Memory Effects
17.5 Selected Applications 574 (3)
17.5.1 Applications in Earth and 574 (3)
Geosciences, Paleoclimate Research and
Cosmoscience
17.6 Stable Isotopes by Using Noble-Gas 577 (1)
Static Vacuum Approach
References 577 (5)
Chapter 18 Outlook 582 (8)
Thomas Prohaska
Johanna Irrgeher
Andreas Zitek
Epilogue 590 (2)
Subject Index 592