Statistical Models and Methods for Reliability and Survival Analysis
[Book Description]
Statistical Models and Methods for Reliability and Survival Analysis brings together contributions by specialists in statistical theory as they discuss their applications providing up-to-date developments in methods used in survival analysis, statistical goodness of fit, stochastic processes for system reliability, amongst others. Many of these are related to the work of Professor M. Nikulin in statistics over the past 30 years. The authors gather together various contributions with a broad array of techniques and results, divided into three parts - Statistical Models and Methods, Statistical Models and Methods in Survival Analysis, and Reliability and Maintenance. The book is intended for researchers interested in statistical methodology and models useful in survival analysis, system reliability and statistical testing for censored and non-censored data.
[Table of Contents]
Preface xv
Biography of Mikhail Stepanovitch Nikouline xvii
Vincent Couallier
L駮 Gerville-R饌che
Catherine Huber-Carol
Nikolaos Limnios
Mounir Mesbah
Part 1. Statistical Models And Methods 1 (228)
Chapter 1 Unidimensionality, Agreement and 3 (18)
Concordance Probability
Zhezhen Jin
Mounir Mesbah
1.1 Introduction 3 (1)
1.2 From reliability to 4 (6)
unidimensionality: CAC and curve
1.2.1 Classical unidimensional models 4 (2)
for measurement
1.2.2 Reliability of an instrument: CAC 6 (3)
1.2.3 Unidimensionality of an 9 (1)
instrument: BRC
1.3 Agreement between binary outcomes: 10 (1)
the kappa coefficient
1.3.1 The kappa model 10 (1)
1.3.2 The kappa coefficient 10 (1)
1.3.3 Estimation of the kappa 10 (1)
coefficient
1.4 Concordance probability 11 (3)
1.4.1 Relationship with Kendall's τ 12 (1)
measure
1.4.2 Relationship with Somer's D 12 (1)
measure
1.4.3 Relationship with ROC curve 13 (1)
1.5 Estimation and inference 14 (1)
1.6 Measure of agreement 14 (1)
1.7 Extension to survival data 15 (2)
1.7.1 Harrell's c-index 15 (1)
1.7.2 Measure of discriminatory power 16 (1)
1.8 Discussion 17 (1)
1.9 Bibliography 18 (3)
Chapter 2 A Universal Goodness-of-Fit Test 21 (12)
Based on Regression Techniques
Florence George
Sneh Gulati
2.1 Introduction 21 (1)
2.2 The Brain and Shapiro procedure for 22 (2)
the exponential distribution
2.3 Applications of the Brain and Shapiro 24 (1)
test
2.4 Small sample null distribution of the 25 (3)
test statistic for specific distributions
2.5 Power studies 28 (1)
2.6 Some real examples 28 (3)
2.7 Conclusions 31 (1)
2.8 Acknowledgment 32 (1)
2.9 Bibliography 32 (1)
Chapter 3 Entropy-type Goodness-of-Fit Tests 33 (12)
for Heavy-Tailed Distributions
Andreas Makrides
Alex Karagrigoriou
Filia Vonta
3.1 Introduction 33 (2)
3.2 The entropy test for heavy-tailed 35 (5)
distributions
3.2.1 Development and asymptotic theory 35 (4)
3.2.2 Discussion 39 (1)
3.3 Simulation study 40 (2)
3.4 Conclusions 42 (1)
3.5 Bibliography 42 (3)
Chapter 4 Penalized Likelihood Methodology 45 (16)
and Frailty Models
Emmanouil Androulakis
Christos Koukouvinos
Filia Vonta
4.1 Introduction 45 (3)
4.2 Penalized likelihood in frailty 48 (7)
models for clustered data
4.2.1 Gamma distributed frailty 52 (1)
4.2.2 Inverse Gaussian distributed 52 (2)
frailty
4.2.3 Uniform distributed frailty 54 (1)
4.3 Simulation results 55 (2)
4.4 Concluding remarks 57 (1)
4.5 Bibliography 57 (4)
Chapter 5 Interactive Investigation of 61 (16)
Statistical Regularities in Testing Composite
Hypotheses of Goodness of Fit
Boris Lemeshko
Stanislav Lemeshko
Andrey Rogozhnikov
5.1 Introduction 61 (2)
5.2 Distributions of the test statistics 63 (5)
in the case of testing composite
hypotheses
5.3 Testing composite hypotheses in 68 (5)
"real-time"
5.4 Conclusions 73 (1)
5.5 Acknowledgment 73 (1)
5.6 Bibliography 73 (4)
Chapter 6 Modeling of Categorical Data 77 (18)
Henning L舫ter
6.1 Introduction 77 (1)
6.2 Continuous conditional distributions 78 (6)
6.2.1 Conditional normal distribution 78 (1)
6.2.1.1 Estimation of parameters 78 (3)
6.2.2 More general continuous 81 (1)
conditional distributions
6.2.2.1 Conditional distribution 82 (1)
6.2.2.2 Normal copula 83 (1)
6.3 Discrete conditional distributions 84 (2)
6.3.1 Parametric conditional 84 (2)
distributions
6.3.2 Estimation of parameters 86 (1)
6.4 Goodness of fit 86 (2)
6.4.1 Distribution of χイ 87 (1)
6.5 Modeling of categorical data 88 (5)
6.5.1 Contingency tables 89 (1)
6.5.1.1 General tables 89 (1)
6.5.1.2 Further examples 93 (1)
6.6 Bibliography 93 (2)
Chapter 7 Within the Sample Comparison of 95 (16)
Prediction Performance of Models and
Submodels: Application to Alzheimer's Disease
Catherine Huber-Carol
Shulamith T. Gross
Annick Alp駻ovitch
7.1 Introduction 95 (1)
7.2 Framework 96 (1)
7.2.1 General description of the data 96 (1)
set and the models to be compared
7.2.2 Definition of the performance 96 (1)
prediction criteria: IDI and BRI
7.3 Estimation of IDI and BRI 97 (5)
7.3.1 General estimating equations for 98 (1)
IDI and BRI
7.3.2 Estimation of IDI and BRI in the 98 (1)
logistic case
7.3.2.1 Asymptotics of IDI2/1 for 99 (1)
logistic predictors
7.3.2.2 Asymptotics of BRI/2/1 for 100 (2)
logistic predictors
7.4 Simulation studies 102 (4)
7.4.1 First simulation 102 (2)
7.4.2 Second simulation: Gu and Pepe's 104 (2)
example
7.5 The three city study of Alzheimer's 106 (2)
disease
7.6 Conclusion 108 (1)
7.7 Bibliography 109 (2)
Chapter 8 Durbin-Knott Components and 111 (14)
Transformations of the Cram駻-von Mises Test
Gennady Martynov
8.1 Introduction 111 (1)
8.2 Weighted Cram駻-von Mises statistic 111 (2)
8.3 Examples of the Cram駻-von Mises 113 (1)
statistics
8.3.1 Classical Cram駻-von Mises 113 (1)
statistic
8.3.2 Anderson-Darling statistic 113 (1)
8.3.3 Cram駻-von Mises statistic with 114 (1)
the power weight function
8.4 Weighted parametric Cram駻-von Mises 114 (3)
statistic
8.4.1 Covariance functions of weighted 114 (2)
parametric empirical process
8.4.2 Eigenvalues and eigenfunctions 116 (1)
for weighted parametric Cram駻-von
Mises statistic
8.5 Transformations of the Cram駻-von 117 (5)
Mises statistic
8.5.1 Preliminary notes 117 (1)
8.5.2 Replacement of eigenvalues 118 (1)
8.5.3 Transformed statistics 119 (3)
8.6 Bibliography 122 (3)
Chapter 9 Conditional Inference in Parametric 125 (20)
Models
Michel Broniatowski
Virgile Caron
9.1 Introduction and context 125 (2)
9.2 The approximate conditional density 127 (4)
of the sample
9.2.1 Approximation of conditional 127 (2)
densities
9.2.2 The proxy of the conditional 129 (2)
density of the sample
9.2.3 Comments on implementation 131 (1)
9.3 Sufficient statistics and 131 (4)
approximated conditional density
9.3.1 Keeping sufficiency under the 131 (1)
proxy density
9.3.2 Rao-Blackwellization 132 (3)
9.4 Exponential models with nuisance 135 (7)
parameters
9.4.1 Conditional inference in 135 (2)
exponential families
9.4.2 Application of conditional 137 (1)
sampling to MC tests
9.4.2.1 Context 137 (1)
9.4.2.2 Bimodal likelihood: testing the 139 (1)
mean of a normal distribution in
dimension 2
9.4.3 Estimation through conditional 140 (2)
likelihood
9.5 Bibliography 142 (3)
Chapter 10 On Testing Stochastic Dominance by 145 (16)
Exceedance, Precedence and Other
Distribution-Free Tests, with Applications
Paul Deheuvels
10.1 Introduction 145 (3)
10.2 Results 148 (7)
10.2.1 The experimental data set 148 (1)
10.2.2 An application of the 149 (1)
Wilcoxon-Mann-Whitney statistics
10.2.3 One-sided Kolmogorov-Smirnov 150 (2)
tests
10.2.4 Precedence and Exceedance Tests 152 (3)
10.3 Negative binomial limit laws 155 (4)
10.4 Conclusion 159 (1)
10.5 Bibliography 159 (2)
Chapter 11 Asymptotically Parameter-Free 161 (16)
Tests for Ergodic Diffusion Processes
Yury A. Kutoyants
Li Zhou
11.1 Introduction 161 (4)
11.2 Ergodic diffusion process and some 165 (3)
limits
11.3 Shift parameter 168 (4)
11.4 Shift and scale parameters 172 (3)
11.5 Bibliography 175 (2)
Chapter 12 A Comparison of Homogeneity Tests 177 (18)
for Different Alternative Hypotheses
Sergey Postovalov
Petr Philonenko
12.1 Homogeneity tests 178 (6)
12.1.1 Tests for data without censoring 179 (1)
12.1.2 Tests for data with censoring 180 (4)
12.2 Alternative hypotheses 184 (1)
12.3 Power simulation 185 (6)
12.3.1 Power of tests without censoring 187 (2)
12.3.2 Power of tests with censoring 189 (1)
12.3.2.1 How does the distribution of 189 (1)
censoring time affect the power of the
test?
12.3.2.2 How does the censoring rate 191 (1)
affect the power of the test?
12.4 Statistical inference 191 (1)
12.5 Acknowledgment 192 (1)
12.6 Bibliography 193 (2)
Chapter 13 Some Asymptotic Results for 195 (18)
Exchangeably Weighted Bootstraps of the
Empirical Estimator of a Semi-Markov Kernel
with Applications
Salim Bouzebda
Nikolaos Limnios
13.1 Introduction 195 (2)
13.2 Semi-Markov setting 197 (4)
13.3 Main results 201 (4)
13.4 Bootstrap for a multidimensional 205 (3)
empirical estimator of a continuous- time
semi-Markov kernel
13.5 Confidence intervals 208 (2)
13.6 Bibliography 210 (3)
Chapter 14 On Chi-Squared Goodness-of-Fit 213 (16)
Test for Normality
Mikhail Nikulin
L駮 Gerville-R饌che
Xuan Quang Tran
14.1 Chi-squared test for normality 213 (8)
14.2 Simulation study 221 (5)
14.3 Bibliography 226 (3)
Part 2 Statistical Models And Methods In 229 (92)
Survival Analysis
Chapter 15 Estimation/Imputation Strategies 231 (22)
for Missing Data in Survival Analysis
Elodie Brunel
Fabienne Comte
Agathe Guilloux
15.1 Introduction 231 (2)
15.2 Model and strategies 233 (8)
15.2.1 Model assumptions 233 (1)
15.2.2 Strategy involving knowledge of 234 (1)
ζ
15.2.3 Strategy involving knowledge of 235 (1)
π
15.2.4 Estimation of ζ or π: 236 (1)
logit or non-parametric regression
15.2.5 Computing the hazard estimators 236 (3)
15.2.6 Theoretical results 239 (2)
15.3 Imputation-based strategy 241 (1)
15.4 Numerical comparison 242 (2)
15.5 Proofs 244 (7)
15.6 Bibliography 251 (2)
Chapter 16 Non-Parametric Estimation of 253 (14)
Linear Functionals of a Multivariate
Distribution Under Multivariate Censoring
with Applications
Olivier Lopez
Philippe Saint-Pierre
16.1 Introduction 253 (2)
16.2 Non-parametric estimation of the 255 (2)
distribution
16.3 Asymptotic properties 257 (3)
16.4 Statistical applications of 260 (3)
functionals
16.4.1 Dependence measures 260 (1)
16.4.2 Bootstrap 261 (1)
16.4.3 Linear regression 262 (1)
16.5 Illustration 263 (1)
16.6 Conclusion 264 (1)
16.7 Acknowledgment 264 (1)
16.8 Bibliography 264 (3)
Chapter 17 Kernel Estimation of Density from 267 (14)
Indirect Observation
Valentin Solev
17.1 Introduction 267 (4)
17.1.1 Random partition 267 (1)
17.1.2 Indirect observation 268 (1)
17.1.3 Kernel density estimator 269 (2)
17.2 Density of random vector Λ(X) 271 (2)
17.3 Pseudo-kernel density estimator 273 (6)
17.3.1 Pointwise density estimation 273 (1)
based on indirect data
17.3.2 Bias of the kernel estimator 274 (2)
17.3.3 Estimate of variance 276 (3)
17.4 Bibliography 279 (2)
Chapter 18 A Comparative Analysis of Some 281 (16)
Chi-Square Goodness-of-Fit Tests for Censored
Data
Ekaterina Chimitova
Boris Lemeshko
18.1 Introduction 281 (2)
18.2 Chi-square goodness-of-fit tests for 283 (2)
censored data
18.2.1 NRR Χイ test 283 (1)
18.2.2 GPF Χイ test 284 (1)
18.3 The choice of grouping intervals 285 (5)
18.3.1 Equifrequent grouping (EFG) 289 (1)
18.3.2 Intervals with equal expected 289 (1)
numbers of failures (EENFG)
18.3.3 Optimal grouping (OptG) 289 (1)
18.4 Empirical power study 290 (3)
18.5 Conclusions 293 (1)
18.6 Acknowledgment 294 (1)
18.7 Bibliography 294 (3)
Chapter 19 A Non-parametric Test for 297 (14)
Comparing Treatments with Missing Data and
Dependent Censoring
Amel Mezaouer
Kamal Boukhetala
Jean-Fran輟is Dupuy
19.1 Introduction 297 (2)
19.2 The proposed test statistic 299 (2)
19.3 Asymptotic distribution of the 301 (4)
proposed test statistic
19.4 Acknowledgment 305 (1)
19.5 Appendix 306 (3)
19.6 Bibliography 309 (2)
Chapter 20 Group Sequential Tests for 311 (10)
Treatment Effect with Covariates Adjustment
through Simple Cross-Effect Models
Isaac Wu Hong-Dar
20.1 Introduction 311 (2)
20.2 Notations and models 313 (3)
20.3 Group sequential test 316 (2)
20.4 Discussion 318 (1)
20.5 Acknowledgment 318 (1)
20.6 Bibliography 318 (3)
Part 3 Reliability And Maintenance 321 (84)
Chapter 21 Optimal Maintenance in Degradation 323 (12)
Processes
Waltraud Kahle
21.1 Introduction 323 (1)
21.2 The degradation model 324 (2)
21.3 Optimal replacement after an 326 (1)
inspection
21.4 The simulation of degradation 327 (2)
processes
21.5 Shape of cost functions and optimal 329 (1)
δ and α
21.6 Incomplete preventive maintenance 330 (3)
21.7 Bibliography 333 (2)
Chapter 22 Planning Accelerated Destructive 335 (22)
Degradation Tests with Competing Risks
Ying Shi
William Q. Meeker
22.1 Introduction 336 (2)
22.1.1 Background 336 (1)
22.1.2 Motivation: adhesive bond C 336 (1)
22.1.3 Related literature 337 (1)
22.1.4 Overview 338 (1)
22.2 Degradation models with competing 338 (3)
risks
22.2.1 Accelerated degradation model 338 (1)
for the primary response
22.2.2 Accelerated degradation model 339 (1)
for the competing response
22.2.3 Degradation models for adhesive 339 (1)
bond C
22.2.4 Degradation distribution and 340 (1)
quantiles
22.3 Failure-time distribution with 341 (1)
competing risks
22.3.1 Relationship between degradation 341 (1)
and failure
22.3.2 Failure-time distribution and 342 (1)
quantiles
22.4 Test planning with competing risks 342 (2)
22.4.1 ADDT planning information 342 (1)
22.4.2 Criterion for ADDT planning with 343 (1)
competing risks
22.5 ADDT plans with competing risks 344 (8)
22.5.1 Initial optimum ADDT plan with 344 (4)
competing risks
22.5.2 Constrained optimum ADDT plan 348 (1)
with competing risks
22.5.3 General equivalence theorem 348 (2)
22.5.4 Compromise ADDT plan with 350 (2)
competing risks
22.6 Monte Carlo simulation to evaluate 352 (1)
test plans
22.7 Conclusions and extensions 353 (1)
22.8 Appendix: technical details 354 (1)
22.8.1 The Fisher information matrix 354 (1)
for ADDT with competing risks
22.8.2 Large-sample approximate 355 (1)
variance of ht (tp) and tp
22.9 Bibliography 355 (2)
Chapter 23 A New Goodness-of-Fit Test for 357 (12)
Shape-Scale Families
Vilijandas Bagdonavicius
23.1 Introduction 357 (1)
23.2 The test statistic 358 (1)
23.3 The asymptotic distribution of the 359 (5)
test statistic
23.4 The test 364 (1)
23.5 Weibull distribution 364 (1)
23.6 Loglogistic distribution 365 (1)
23.7 Lognormal distribution 366 (1)
23.8 Bibliography 367 (2)
Chapter 24 Time-to-Failure of 369 (14)
Markov-Modulated Gamma Process with
Application to Replacement Policies
Christian Paroissin
Landy Rabehasaina
24.1 Introduction 369 (1)
24.2 Degradation model 370 (1)
24.2.1 Covariate process 370 (1)
24.2.2 Degradation process 371 (1)
24.3 Time-to-failure distribution 371 (5)
24.3.1 Case of a non-modulated gamma 372 (1)
process
24.3.2 Case of a Markov-modulated gamma 373 (1)
process
24.3.3 Stochastic comparison 374 (2)
24.4 Replacement policies 376 (5)
24.4.1 Block replacement policy 377 (2)
24.4.2 Age replacement policy 379 (2)
24.5 Conclusion 381 (1)
24.6 Acknowledgment 381 (1)
24.7 Bibliography 382 (1)
Chapter 25 Calculation of the Redundant 383 (8)
Structure Reliability for Aging-type Elements
Alexandr Antonov
Alexandr Plyaskin
Khizri Tataev
25.1 Introduction 383 (1)
25.2 The operation process of the renewal 384 (2)
and repaired products
25.3 The model of the geometric process 386 (1)
25.4 Task solution 387 (2)
25.5 Conclusion 389 (1)
25.6 Bibliography 390 (1)
Chapter 26 On Engineering Risks of Complex 391 (14)
Hierarchical Systems Analysis
Vladimir Rykov
26.1 Introduction 391 (1)
26.2 Risk definition and measurement 392 (1)
26.3 Engineering risk 393 (2)
26.4 Risk characteristics for general 395 (5)
model calculation
26.4.1 Lifelength and appropriate loss 395 (1)
size CDF
26.4.2 Probability of risk event 396 (1)
evolution
26.4.3 Lifelength and loss moments 397 (2)
26.4.4 Mostly dangerous paths of risk 399 (1)
event evolution and sensitivity analysis
26.5 Risk analysis for short-time risk 400 (2)
models
26.6 Conclusion 402 (1)
26.7 Bibliography 402 (3)
List of Authors 405 (4)
Index 409