新书报道
当前位置: 首页 >> 科技综合 >> 正文
Luminescence : The Instrumental Key to the Future of Nanotechnology
发布日期:2015-11-25  浏览

Luminescence : The Instrumental Key to the Future of Nanotechnology

[BOOK DESCRIPTION]

The book encompasses the nanoscale semiconductor field by amalgamating a broad multidisciplinary arena including applications for energy conservation, materials performance enhancement, electronic circuitry, video displays, lighting, photovoltaics, quantum computing, memory, chemo- and biosensors, pharmaceuticals and medical diagnostics inter alia. The first section presents a comprehensive introductory overview of the photophysics, instrumentation and experimental methodology of nanomaterial luminescence. In the second and third sections of the book, invited experts highlight more specific advanced research areas that have either shown potential for, or have already realized, significant impact on the day-to-day aspects of modern life and the world economy.


[TABLE OF CONTENTS]


Preface                                            xiii
    1 Important Spectral and Polarized             1   (22)
    Properties of Semiconducting SWNT
    Photoluminescence
          Shigeo Maruyama
          Yuhei Miyauchi
      1.1 Important Spectral Features              1   (3)
      1.2 Phonon Sideband in Absorption            4   (2)
      1.3 Various Sidebands in Emission            6   (5)
      1.4 Cross-Polarized Absorption               11  (4)
      1.5 Transverse Quasi-Dark Excitons           15  (8)
    2 Advanced Aspects of Photoluminescence        23  (12)
    Instrumentation for Carbon Nanotubes
          Said Kazaoui
          Y. Futami
          Konstantin Iakoubovskii
          Nobutsugu Minami
      2.1 Introduction                             24  (1)
      2.2 CNT Thin-Film Fabrication Methods        25  (1)
      2.3 NIR-PL-Mapping Instruments               26  (5)
        2.3.1 Scanning-Type NIR-PL-Mapping         26  (2)
        Instrument
        2.3.2 FT-IR-Type NIR-PL-Mapping            28  (3)
        Instrument
      2.4 Outlook                                  31  (4)
    3 Developments in Catalytic Methodology for    35  (26)
    (n,m) Selective Synthesis of SWNTs
          Yuan Chen
          Bo Wang
          Yanhui Yang
          Qiang Wang
      3.1 Introduction                             36  (1)
      3.2 Effective Catalysts for (n,m)            37  (4)
      Selective Synthesis
      3.3 Growth Parameters Influencing [n,m]      41  (5)
      Selectivity
        3.3.1 Temperature                          42  (1)
        3.3.2 Catalyst Particle                    43  (2)
        3.3.3 Carbon Precursor                     45  (1)
        3.3.4 "Clone" SWNTs                        46  (1)
      3.4 Fundamental Understanding of (n,m)       46  (5)
      Selectivity
      3.5 Characterization Methodology for         51  (3)
      (n,m) Abundance Evaluation
      3.6 Conclusions and Outlook                  54  (7)
    4 Single-Walled Carbon Nanotube Thin-Film      61  (54)
    Electronics
          Husnu Emrah Unalan
          Manish Chhowalla
      4.1 Introduction                             62  (3)
      4.2 Purification and Dispersion of SWNTs     65  (4)
      4.3 Thin-Film Deposition Processes           69  (5)
      4.4 Optoelectronic Properties of SWNTs       74  (7)
      4.5 SWNT Functionalization Treatments        81  (3)
      4.6 Applications and Devices                 84  (17)
        4.6.1 Photovoltaic Devices                 84  (3)
        4.6.2 Light-Emitting Diodes                87  (1)
        4.6.3 Supercapacitors and Batteries        87  (3)
        4.6.4 Sensors                              90  (2)
        4.6.5 Electromagnetic Interference         92  (1)
        Shielding
        4.6.6 IR Properties and Applications       92  (1)
        4.6.7 Thin-Film Transistors                93  (5)
        4.6.8 Other Devices                        98  (3)
      4.7 Conclusions and Outlook                  101 (14)
    5 Single-Walled Carbon Nanotube-Based          115 (18)
    Solution-Processed Organic Optoelectronic
    Devices
          Ming Shao
          Bin Hu
      5.1 Introduction                             115 (1)
      5.2 Effects of SWCNTs on the                 116 (9)
      Electroluminescent Performance of Organic
      Light-Emitting Diodes
      5.3 CNT Effect on Photovoltaic Response      125 (8)
      in Conjugated Polymers
    6 Exciton Energy Transfer in Carbon            133 (30)
    Nanotubes Probed by Photoluminescence
          Ping Heng Tan
          Tawfique Hasan
          Francesco Bonaccorso
          Andrea C. Ferrari
      6.1 Introduction                             133 (1)
      6.2 The Photoluminescence Spectrum of        134 (7)
      Nanotube Bundles
      6.3 Mechanism and Efficiency of EET in       141 (3)
      Nanotube Bundles
      6.4 How to Distinguish EET-Induced           144 (4)
      Features from Other Sidebands in the PL
      Spectrum?
      6.5 Relaxation Pathways of Excitons in       148 (2)
      Nanotube Bundles
      6.6 How to Detect Bundles and Probe Their    150 (4)
      Concentration?
      6.7 Exploiting EET for Photonic and          154 (1)
      Optoelectronic Applications
      6.8 Conclusions                              155 (8)
    7 Advances in Dispersal Agents and             163 (40)
    Methodology for SWNT Analysis
          Tsuyohiko Fujigaya
          Naotoshi Nakashima
      7.1 Introduction                             163 (1)
      7.2 Characterization of Dispersion States    164 (1)
      7.3 Solubilization by Dispersal Agents       165 (17)
        7.3.1 Surfactants                          165 (4)
        7.3.2 Polycyclic Aromatic Compounds        169 (4)
        7.3.3 Porphyrins                           173 (4)
        7.3.4 DNA                                  177 (4)
        7.3.5 Condensation Polymers                181 (1)
      7.4 Nanotube/Polymer Composites              182 (7)
        7.4.1 Curable Monomers and                 182 (1)
        Nanoimprinting
        7.4.2 Nanotube/Polymer Gel for             183 (3)
        NIR-Responsive Materials
        7.4.3 Conductive Nanotube Honeycomb Film   186 (3)
      7.5 Summary                                  189 (14)
    8 Time Domain Luminescence Instrumentation     203 (26)
          Graham Hungerford
          Kulwinder Sagoo
          David McLoskey
      8.1 Introduction                             204 (2)
      8.2 Overview                                 206 (1)
      8.3 Light Sources                            207 (9)
        8.3.1 Flashlamps                           207 (2)
        8.3.2 Dye Laser Systems                    209 (1)
        8.3.3 LEDs and Laser Diodes                210 (2)
        8.3.4 Femtosecond Lasers                   212 (1)
        8.3.5 Supercontinuum Lasers                213 (1)
        8.3.6 Sources for Longer-Lived Decays      214 (2)
      8.4 Detectors                                216 (4)
        8.4.1 Photomultiplier Tubes                217 (2)
        8.4.2 Microchannel Plate Detectors         219 (1)
        8.4.3 Avalanche Photodiodes                219 (1)
      8.5 Data Acquisition Electronics             220 (4)
        8.5.1 TCSPC Electronics                    220 (3)
        8.5.2 Longer Timescale Measurements        223 (1)
      8.6 Time-Resolved Measurement System         224 (1)
      Considerations
      8.7 Summary                                  225 (4)
    9 Key Approaches to Linking Nanoparticle       229 (30)
    Metrology and Photoluminescence
          Yu Chen
          Jan Karolin
          David J. S. Birch
      9.1 Introduction                             230 (4)
      9.2 Fluorescence Anisotropy Theory           234 (2)
      9.3 Experimental                             236 (8)
        9.3.1 Instrumentation                      236 (2)
        9.3.2 Choice of Dyes and Nanoparticles     238 (6)
        and Sample Preparation
      9.4 Results and Discussions                  244 (9)
        9.4.1 Ludox Labeled with Extrinsic         244 (4)
        Probes
        9.4.2 Fluorescence from Au Nanoparticles   248 (3)
        9.4.3 Size-Dependent Fluorescence          251 (2)
      9.5 Conclusions                              253 (6)
    10 Nanometer-Scale Measurements Using FRET     259 (32)
    and FLIM Microscopy
          Margarida Barroso
          Yuansheng Sun
          Horst Wallrabe
          Ammasi Periasamy
      10.1 Introduction                            260 (1)
      10.2 FRET Microscopy                         261 (4)
      10.3 Choosing FRET Pairs                     265 (2)
      10.4 Organic Dye Donor-Acceptor FRET         267 (5)
      Pair: AF488--AF555
        10.4.1 Filter-Based FRET Microscopy        267 (5)
      10.5 FP Donor--Acceptor FRET Pair:           272 (6)
      mTFP-mK02
        10.5.1 Spectral FRET Microscopy            273 (3)
        10.5.2 FLIM-FRET Microscopy                276 (2)
      10.6 QD--Organic Dye FRET Pairs:             278 (7)
      QD566--AF568 and QD580--AF594
        10.6.1 Application of QDs as Donor         279 (2)
        Molecules in FRET Pairs
        10.6.2 Filter-Based and Spectral FRET      281 (4)
        Confocal Microscopy of QD566--AF568 and
        QD580--AF594
      10.7 Conclusions and Outlook                 285 (6)
    11 Cancer Detection and Biosensing             291 (32)
    Applications with Quantum Dots
          Ken-Tye Yong
      11.1 Introduction                            292 (2)
      11.2 Preparation of Quantum Dots with the    294 (2)
      Hot Colloidal Synthesis Method
      11.3 Types of Quantum Dots Available for     296 (6)
      Biomedical and Cancer Applications
        11.3.1 CdSe/ZnS Core-Shell Quantum Dots    297 (1)
        11.3.2 CdTe/ZnS Core-Shell Quantum Dots    297 (1)
        11.3.3 InP/ZnS Core-Shell Quantum Dots     298 (1)
        11.3.4 PbS Quantum Dots                    299 (1)
        11.3.5 Type II CdTe/CdSe Core-Shell        299 (1)
        Quantum Dots
        11.3.6 Silicon Quantum Dots                300 (1)
        11.3.7 Other Types of Quantum Dots         301 (1)
        11.3.8 CdSe/CdS/ZnS Quantum Rods           302 (1)
      11.4 Preparation of Water-Dispersible        302 (2)
      Quantum Dots
      11.5 Preparation of Bioconjugated Quantum    304 (1)
      Dots
      11.6 Bioconjugated Quantum Dots and          305 (3)
      Quantum Rods for in vitro Cancer Imaging
      and Sensing
      11.7 Multifunctional Quantum Dots and        308 (4)
      Quantum Rods for in vivo Cancer Targeting
      and Imaging
      11.8 The Risk and Benefits of Using          312 (1)
      Functionalized Quantum Dots for
      Biomedical Health Care
      11.9 Conclusions and Outlook                 313 (10)
    12 Zinc Oxide Nanoparticles in Biosensing      323 (20)
    Applications
          Linda Y.L. Wu
      12.1 Introduction                            324 (2)
      12.2 Particle Size Control through           326 (2)
      Chemical Synthesis and Surface
      Modifications
      12.3 Bandgap Modification for Visible        328 (4)
      Emission
        12.3.1 Photoluminescence Spectra of        329 (1)
        Pure and Doped ZnO
        12.3.2 Quantum Yield of Pure and Doped     330 (2)
        ZnO Colloids
      12.4 Bioimaging Using ZnO Nanocrystals       332 (4)
        12.4.1 In vitro Bioimaging on Human and    332 (2)
        Animal Cells
        12.4.2 Bioimaging-on a Plant System        334 (1)
        12.4.3 In vivo Bioimaging in a Rat Model   334 (2)
      12.5 Cytotoxicity Tests                      336 (3)
      12.6 Conclusions and Outlook                 339 (4)
    13 Use of QDOT Photoluminescence for           343 (24)
    Codification and Authentication Purposes
          Shoude Chang
      13.1 Introduction                            344 (2)
      13.2 QDOTs Used as Information Carriers      346 (2)
      13.3 Information Encoding                    348 (7)
      13.4 Information Retrieval                   355 (3)
      13.5 Applications                            358 (5)
        13.5.1 Anticounterfeiting                  358 (2)
        13.5.2 Friend/Enemy Discrimination         360 (3)
      13.6 Conclusions and Outlook                 363 (4)
    14 Characterization Approaches for Blue and    367 (16)
    White Phosphorescent OLEDs
          Brian W. D'Andrade
      14.1 Introduction                            368 (1)
      14.2 Blue Electrophosphorescence             368 (5)
        14.2.1 Device Architecture and Energy      369 (1)
        Transfer
        14.2.2 Identifying High-Triplet-Energy     370 (1)
        Host Materials
        14.2.3 A General Route to Deep-Blue        371 (1)
        Electrophosphorescence
        14.2.4 Application in White OLEDs          372 (1)
      14.3 White Organic Light-Emitting Device     373 (10)
        14.3.1 Optical Characterization and        374 (3)
        Device Efficiency
        14.3.2 Characterization of Organic         377 (6)
        Semiconductor Materials
Index                                              383

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上