Luminescence : The Instrumental Key to the Future of Nanotechnology
[BOOK DESCRIPTION]
The book encompasses the nanoscale semiconductor field by amalgamating a broad multidisciplinary arena including applications for energy conservation, materials performance enhancement, electronic circuitry, video displays, lighting, photovoltaics, quantum computing, memory, chemo- and biosensors, pharmaceuticals and medical diagnostics inter alia. The first section presents a comprehensive introductory overview of the photophysics, instrumentation and experimental methodology of nanomaterial luminescence. In the second and third sections of the book, invited experts highlight more specific advanced research areas that have either shown potential for, or have already realized, significant impact on the day-to-day aspects of modern life and the world economy.
[TABLE OF CONTENTS]
Preface xiii
1 Important Spectral and Polarized 1 (22)
Properties of Semiconducting SWNT
Photoluminescence
Shigeo Maruyama
Yuhei Miyauchi
1.1 Important Spectral Features 1 (3)
1.2 Phonon Sideband in Absorption 4 (2)
1.3 Various Sidebands in Emission 6 (5)
1.4 Cross-Polarized Absorption 11 (4)
1.5 Transverse Quasi-Dark Excitons 15 (8)
2 Advanced Aspects of Photoluminescence 23 (12)
Instrumentation for Carbon Nanotubes
Said Kazaoui
Y. Futami
Konstantin Iakoubovskii
Nobutsugu Minami
2.1 Introduction 24 (1)
2.2 CNT Thin-Film Fabrication Methods 25 (1)
2.3 NIR-PL-Mapping Instruments 26 (5)
2.3.1 Scanning-Type NIR-PL-Mapping 26 (2)
Instrument
2.3.2 FT-IR-Type NIR-PL-Mapping 28 (3)
Instrument
2.4 Outlook 31 (4)
3 Developments in Catalytic Methodology for 35 (26)
(n,m) Selective Synthesis of SWNTs
Yuan Chen
Bo Wang
Yanhui Yang
Qiang Wang
3.1 Introduction 36 (1)
3.2 Effective Catalysts for (n,m) 37 (4)
Selective Synthesis
3.3 Growth Parameters Influencing [n,m] 41 (5)
Selectivity
3.3.1 Temperature 42 (1)
3.3.2 Catalyst Particle 43 (2)
3.3.3 Carbon Precursor 45 (1)
3.3.4 "Clone" SWNTs 46 (1)
3.4 Fundamental Understanding of (n,m) 46 (5)
Selectivity
3.5 Characterization Methodology for 51 (3)
(n,m) Abundance Evaluation
3.6 Conclusions and Outlook 54 (7)
4 Single-Walled Carbon Nanotube Thin-Film 61 (54)
Electronics
Husnu Emrah Unalan
Manish Chhowalla
4.1 Introduction 62 (3)
4.2 Purification and Dispersion of SWNTs 65 (4)
4.3 Thin-Film Deposition Processes 69 (5)
4.4 Optoelectronic Properties of SWNTs 74 (7)
4.5 SWNT Functionalization Treatments 81 (3)
4.6 Applications and Devices 84 (17)
4.6.1 Photovoltaic Devices 84 (3)
4.6.2 Light-Emitting Diodes 87 (1)
4.6.3 Supercapacitors and Batteries 87 (3)
4.6.4 Sensors 90 (2)
4.6.5 Electromagnetic Interference 92 (1)
Shielding
4.6.6 IR Properties and Applications 92 (1)
4.6.7 Thin-Film Transistors 93 (5)
4.6.8 Other Devices 98 (3)
4.7 Conclusions and Outlook 101 (14)
5 Single-Walled Carbon Nanotube-Based 115 (18)
Solution-Processed Organic Optoelectronic
Devices
Ming Shao
Bin Hu
5.1 Introduction 115 (1)
5.2 Effects of SWCNTs on the 116 (9)
Electroluminescent Performance of Organic
Light-Emitting Diodes
5.3 CNT Effect on Photovoltaic Response 125 (8)
in Conjugated Polymers
6 Exciton Energy Transfer in Carbon 133 (30)
Nanotubes Probed by Photoluminescence
Ping Heng Tan
Tawfique Hasan
Francesco Bonaccorso
Andrea C. Ferrari
6.1 Introduction 133 (1)
6.2 The Photoluminescence Spectrum of 134 (7)
Nanotube Bundles
6.3 Mechanism and Efficiency of EET in 141 (3)
Nanotube Bundles
6.4 How to Distinguish EET-Induced 144 (4)
Features from Other Sidebands in the PL
Spectrum?
6.5 Relaxation Pathways of Excitons in 148 (2)
Nanotube Bundles
6.6 How to Detect Bundles and Probe Their 150 (4)
Concentration?
6.7 Exploiting EET for Photonic and 154 (1)
Optoelectronic Applications
6.8 Conclusions 155 (8)
7 Advances in Dispersal Agents and 163 (40)
Methodology for SWNT Analysis
Tsuyohiko Fujigaya
Naotoshi Nakashima
7.1 Introduction 163 (1)
7.2 Characterization of Dispersion States 164 (1)
7.3 Solubilization by Dispersal Agents 165 (17)
7.3.1 Surfactants 165 (4)
7.3.2 Polycyclic Aromatic Compounds 169 (4)
7.3.3 Porphyrins 173 (4)
7.3.4 DNA 177 (4)
7.3.5 Condensation Polymers 181 (1)
7.4 Nanotube/Polymer Composites 182 (7)
7.4.1 Curable Monomers and 182 (1)
Nanoimprinting
7.4.2 Nanotube/Polymer Gel for 183 (3)
NIR-Responsive Materials
7.4.3 Conductive Nanotube Honeycomb Film 186 (3)
7.5 Summary 189 (14)
8 Time Domain Luminescence Instrumentation 203 (26)
Graham Hungerford
Kulwinder Sagoo
David McLoskey
8.1 Introduction 204 (2)
8.2 Overview 206 (1)
8.3 Light Sources 207 (9)
8.3.1 Flashlamps 207 (2)
8.3.2 Dye Laser Systems 209 (1)
8.3.3 LEDs and Laser Diodes 210 (2)
8.3.4 Femtosecond Lasers 212 (1)
8.3.5 Supercontinuum Lasers 213 (1)
8.3.6 Sources for Longer-Lived Decays 214 (2)
8.4 Detectors 216 (4)
8.4.1 Photomultiplier Tubes 217 (2)
8.4.2 Microchannel Plate Detectors 219 (1)
8.4.3 Avalanche Photodiodes 219 (1)
8.5 Data Acquisition Electronics 220 (4)
8.5.1 TCSPC Electronics 220 (3)
8.5.2 Longer Timescale Measurements 223 (1)
8.6 Time-Resolved Measurement System 224 (1)
Considerations
8.7 Summary 225 (4)
9 Key Approaches to Linking Nanoparticle 229 (30)
Metrology and Photoluminescence
Yu Chen
Jan Karolin
David J. S. Birch
9.1 Introduction 230 (4)
9.2 Fluorescence Anisotropy Theory 234 (2)
9.3 Experimental 236 (8)
9.3.1 Instrumentation 236 (2)
9.3.2 Choice of Dyes and Nanoparticles 238 (6)
and Sample Preparation
9.4 Results and Discussions 244 (9)
9.4.1 Ludox Labeled with Extrinsic 244 (4)
Probes
9.4.2 Fluorescence from Au Nanoparticles 248 (3)
9.4.3 Size-Dependent Fluorescence 251 (2)
9.5 Conclusions 253 (6)
10 Nanometer-Scale Measurements Using FRET 259 (32)
and FLIM Microscopy
Margarida Barroso
Yuansheng Sun
Horst Wallrabe
Ammasi Periasamy
10.1 Introduction 260 (1)
10.2 FRET Microscopy 261 (4)
10.3 Choosing FRET Pairs 265 (2)
10.4 Organic Dye Donor-Acceptor FRET 267 (5)
Pair: AF488--AF555
10.4.1 Filter-Based FRET Microscopy 267 (5)
10.5 FP Donor--Acceptor FRET Pair: 272 (6)
mTFP-mK02
10.5.1 Spectral FRET Microscopy 273 (3)
10.5.2 FLIM-FRET Microscopy 276 (2)
10.6 QD--Organic Dye FRET Pairs: 278 (7)
QD566--AF568 and QD580--AF594
10.6.1 Application of QDs as Donor 279 (2)
Molecules in FRET Pairs
10.6.2 Filter-Based and Spectral FRET 281 (4)
Confocal Microscopy of QD566--AF568 and
QD580--AF594
10.7 Conclusions and Outlook 285 (6)
11 Cancer Detection and Biosensing 291 (32)
Applications with Quantum Dots
Ken-Tye Yong
11.1 Introduction 292 (2)
11.2 Preparation of Quantum Dots with the 294 (2)
Hot Colloidal Synthesis Method
11.3 Types of Quantum Dots Available for 296 (6)
Biomedical and Cancer Applications
11.3.1 CdSe/ZnS Core-Shell Quantum Dots 297 (1)
11.3.2 CdTe/ZnS Core-Shell Quantum Dots 297 (1)
11.3.3 InP/ZnS Core-Shell Quantum Dots 298 (1)
11.3.4 PbS Quantum Dots 299 (1)
11.3.5 Type II CdTe/CdSe Core-Shell 299 (1)
Quantum Dots
11.3.6 Silicon Quantum Dots 300 (1)
11.3.7 Other Types of Quantum Dots 301 (1)
11.3.8 CdSe/CdS/ZnS Quantum Rods 302 (1)
11.4 Preparation of Water-Dispersible 302 (2)
Quantum Dots
11.5 Preparation of Bioconjugated Quantum 304 (1)
Dots
11.6 Bioconjugated Quantum Dots and 305 (3)
Quantum Rods for in vitro Cancer Imaging
and Sensing
11.7 Multifunctional Quantum Dots and 308 (4)
Quantum Rods for in vivo Cancer Targeting
and Imaging
11.8 The Risk and Benefits of Using 312 (1)
Functionalized Quantum Dots for
Biomedical Health Care
11.9 Conclusions and Outlook 313 (10)
12 Zinc Oxide Nanoparticles in Biosensing 323 (20)
Applications
Linda Y.L. Wu
12.1 Introduction 324 (2)
12.2 Particle Size Control through 326 (2)
Chemical Synthesis and Surface
Modifications
12.3 Bandgap Modification for Visible 328 (4)
Emission
12.3.1 Photoluminescence Spectra of 329 (1)
Pure and Doped ZnO
12.3.2 Quantum Yield of Pure and Doped 330 (2)
ZnO Colloids
12.4 Bioimaging Using ZnO Nanocrystals 332 (4)
12.4.1 In vitro Bioimaging on Human and 332 (2)
Animal Cells
12.4.2 Bioimaging-on a Plant System 334 (1)
12.4.3 In vivo Bioimaging in a Rat Model 334 (2)
12.5 Cytotoxicity Tests 336 (3)
12.6 Conclusions and Outlook 339 (4)
13 Use of QDOT Photoluminescence for 343 (24)
Codification and Authentication Purposes
Shoude Chang
13.1 Introduction 344 (2)
13.2 QDOTs Used as Information Carriers 346 (2)
13.3 Information Encoding 348 (7)
13.4 Information Retrieval 355 (3)
13.5 Applications 358 (5)
13.5.1 Anticounterfeiting 358 (2)
13.5.2 Friend/Enemy Discrimination 360 (3)
13.6 Conclusions and Outlook 363 (4)
14 Characterization Approaches for Blue and 367 (16)
White Phosphorescent OLEDs
Brian W. D'Andrade
14.1 Introduction 368 (1)
14.2 Blue Electrophosphorescence 368 (5)
14.2.1 Device Architecture and Energy 369 (1)
Transfer
14.2.2 Identifying High-Triplet-Energy 370 (1)
Host Materials
14.2.3 A General Route to Deep-Blue 371 (1)
Electrophosphorescence
14.2.4 Application in White OLEDs 372 (1)
14.3 White Organic Light-Emitting Device 373 (10)
14.3.1 Optical Characterization and 374 (3)
Device Efficiency
14.3.2 Characterization of Organic 377 (6)
Semiconductor Materials
Index 383