新书报道
当前位置: 首页 >> 科技综合 >> 正文
Nonlinear Finite Elements for Continua and Structures
发布日期:2015-11-30  浏览

Nonlinear Finite Elements for Continua and Structures

[BOOK DESCRIPTION]

This updated and expanded edition of the bestselling textbook provides a comprehensive introduction to the methods and theory of nonlinear finite element analysis. New material provides a concise introduction to some of the cutting-edge methods that have evolved in recent years in the field of nonlinear finite element modeling, and includes the eXtended finite element method (XFEM), multiresolution continuum theory for multiscale microstructures, and dislocation-density-based crystalline plasticity. Nonlinear Finite Elements for Continua and Structures, Second Edition focuses on the formulation and solution of discrete equations for various classes of problems that are of principal interest in applications to solid and structural mechanics. Topics covered include the discretization by finite elements of continua in one dimension and in multi-dimensions; the formulation of constitutive equations for nonlinear materials and large deformations; procedures for the solution of the discrete equations, including considerations of both numerical and multiscale physical instabilities; and the treatment of structural and contact-impact problems.Key features: * Presents a detailed and rigorous treatment of nonlinear solid mechanics and how it can be implemented in finite element analysis * Covers many of the material laws used in today's software and research * Introduces advanced topics in nonlinear finite element modelling of continua * Introduction of multiresolution continuum theory and XFEM * Accompanied by a website hosting a solution manual and MATLAB(R) and FORTRAN code Nonlinear Finite Elements for Continua and Structures, Second Edition is a must have textbook for graduate students in mechanical engineering, civil engineering, applied mathematics, engineering mechanics, and materials science, and is also an excellent source of information for researchers and practitioners in industry.


[TABLE OF CONTENTS]

Foreword                                           xxi
Preface                                            xxiii
        List of Boxes                              xxvii
    1 Introduction                                 1    (18)
      1.1 Nonlinear Finite Elements in Design      1    (3)
      1.2 Related Books and a Brief History of     4    (3)
      Nonlinear Finite Elements
      1.3 Notation                                 7    (2)
        1.3.1 Indicial Notation                    7    (1)
        1.3.2 Tensor Notation                      8    (1)
        1.3.3 Functions                            8    (1)
        1.3.4 Matrix Notation                      8    (1)
      1.4 Mesh Descriptions                        9    (4)
      1.5 Classification of Partial                13   (4)
      Differential Equations
      1.6 Exercises                                17   (2)
    2 Lagrangian and Eulerian Finite Elements      19   (58)
    in One Dimension
      2.1 Introduction                             19   (2)
      2.2 Governing Equations for Total            21   (7)
      Lagrangian Formulation
        2.2.1 Nomenclature                         21   (1)
        2.2.2 Motion and Strain Measure            22   (1)
        2.2.3 Stress Measure                       22   (1)
        2.2.4 Governing Equations                  23   (3)
        2.2.5 Momentum Equation in Terms of        26   (1)
        Displacements
        2.2.6 Continuity of Functions              27   (1)
        2.2.7 Fundamental Theorem of Calculus      28   (1)
      2.3 Weak Form for Total Lagrangian           28   (6)
      Formulation
        2.3.1 Strong Form to Weak Form             28   (2)
        2.3.2 Weak Form to Strong Form             30   (2)
        2.3.3 Physical Names of Virtual Work       32   (1)
        Terms
        2.3.4 Principle of Virtual Work            33   (1)
      2.4 Finite Element Discretization in         34   (6)
      Total Lagrangian Formulation
        2.4.1 Finite Element Approximations        34   (1)
        2.4.2 Nodal Forces                         35   (2)
        2.4.3 Semidiscrete Equations               37   (1)
        2.4.4 Initial Conditions                   38   (1)
        2.4.5 Least-Square Fit to Initial          39   (1)
        Conditions
        2.4.6 Diagonal Mass Matrix                 39   (1)
      2.5 Element and Global Matrices              40   (11)
      2.6 Governing Equations for Updated          51   (2)
      Lagrangian Formulation
        2.6.1 Boundary and Interior Continuity     52   (1)
        Conditions
        2.6.2 Initial Conditions                   53   (1)
      2.7 Weak Form for Updated Lagrangian         53   (2)
      Formulation
      2.8 Element Equations for Updated            55   (12)
      Lagrangian Formulation
        2.8.1 Finite Element Approximation         55   (1)
        2.8.2 Element Coordinates                  56   (2)
        2.8.3 Internal and External Nodal Forces   58   (1)
        2.8.4 Mass Matrix                          59   (1)
        2.8.5 Equivalence of Updated and Total     60   (1)
        Lagrangian Formulations
        2.8.6 Assembly, Boundary Conditions and    61   (3)
        Initial Conditions
        2.8.7 Mesh Distortion                      64   (3)
      2.9 Governing Equations for Eulerian         67   (1)
      Formulation
      2.10 Weak Forms for Eulerian Mesh            68   (1)
      Equations
      2.11 Finite Element Equations                69   (3)
        2.11.1 Momentum Equation                   71   (1)
      2.12 Solution Methods                        72   (2)
      2.13 Summary                                 74   (1)
      2.14 Exercises                               75   (2)
    3 Continuum Mechanics                          77   (70)
      3.1 Introduction                             77   (1)
      3.2 Deformation and Motion                   78   (17)
        3.2.1 Definitions                          78   (1)
        3.2.2 Eulerian and Lagrangian              79   (1)
        Coordinates
        3.2.3 Motion                               80   (1)
        3.2.4 Eulerian and Lagrangian              80   (1)
        Descriptions
        3.2.5 Displacement, Velocity and           81   (2)
        Acceleration
        3.2.6 Deformation Gradient                 83   (1)
        3.2.7 Conditions on Motion                 84   (1)
        3.2.8 Rigid Body Rotation and              85   (10)
        Coordinate Transformations
      3.3 Strain Measures                          95   (9)
        3.3.1 Green Strain Tensor                  95   (2)
        3.3.2 Rate-of-Deformation                  97   (1)
        3.3.3 Rate-of-Deformation in Terms of      98   (6)
        Rate of Green Strain
      3.4 Stress Measures                          104  (7)
        3.4.1 Definitions of Stresses              104  (1)
        3.4.2 Transformation between Stresses      105  (2)
        3.4.3 Corotational Stress and              107  (4)
        Rate-of-Deformation
      3.5 Conservation Equations                   111  (12)
        3.5.1 Conservation Laws                    111  (1)
        3.5.2 Gauss's Theorem                      112  (1)
        3.5.3 Material Time Derivative of an       113  (2)
        Integral and Reynolds' Transport Theorem
        3.5.4 Mass Conservation                    115  (1)
        3.5.5 Conservation of Linear Momentum      116  (3)
        3.5.6 Equilibrium Equation                 119  (1)
        3.5.7 Reynolds' Theorem for a              119  (1)
        Density-Weighted Integrand
        3.5.8 Conservation of Angular Momentum     120  (1)
        3.5.9 Conservation of Energy               120  (3)
      3.6 Lagrangian Conservation Equations        123  (7)
        3.6.1 Introduction and Definitions         123  (1)
        3.6.2 Conservation of Linear Momentum      124  (2)
        3.6.3 Conservation of Angular Momentum     126  (1)
        3.6.4 Conservation of Energy in            127  (2)
        Lagrangian Description
        3.6.5 Power of PK2 Stress                  129  (1)
      3.7 Polar Decomposition and                  130  (13)
      Frame-Invariance
        3.7.1 Polar Decomposition Theorem          130  (5)
        3.7.2 Objective Rates in Constitutive      135  (1)
        Equations
        3.7.3 Jaumann Rate                         136  (1)
        3.7.4 Truesdell Rate and Green--Naghdi     137  (5)
        Rate
        3.7.5 Explanation of Objective Rates       142  (1)
      3.8 Exercises                                143  (4)
    4 Lagrangian Meshes                            147  (80)
      4.1 Introduction                             147  (1)
      4.2 Governing Equations                      148  (4)
      4.3 Weak Form: Principle of Virtual Power    152  (6)
        4.3.1 Strong Form to Weak Form             153  (1)
        4.3.2 Weak Form to Strong Form             154  (2)
        4.3.3 Physical Names of Virtual Power      156  (2)
        Terms
      4.4 Updated Lagrangian Finite Element        158  (10)
      Discretization
        4.4.1 Finite Element Approximation         158  (2)
        4.4.2 Internal and External Nodal Forces   160  (1)
        4.4.3 Mass Matrix and Inertial Forces      161  (1)
        4.4.4 Discrete Equations                   161  (2)
        4.4.5 Element Coordinates                  163  (2)
        4.4.6 Derivatives of Functions             165  (1)
        4.4.7 Integration and Nodal Forces         166  (1)
        4.4.8 Conditions on Parent to Current      166  (1)
        Map
        4.4.9 Simplifications of Mass Matrix       167  (1)
      4.5 Implementation                           168  (26)
        4.5.1 Indicial to Matrix Notation          169  (2)
        Translation
        4.5.2 Voigt Notation                       171  (2)
        4.5.3 Numerical Quadrature                 173  (1)
        4.5.4 Selective-Reduced Integration        174  (1)
        4.5.5 Element Force and Matrix             175  (19)
        Transformations
      4.6 Corotational Formulations                194  (9)
      4.7 Total Lagrangian Formulation             203  (3)
        4.7.1 Governing Equations                  203  (2)
        4.7.2 Total Lagrangian Finite Element      205  (1)
        Equations by Transformation
      4.8 Total Lagrangian Weak Form               206  (3)
        4.8.1 Strong Form to Weak Form             206  (2)
        4.8.2 Weak Form to Strong Form             208  (1)
      4.9 Finite Element Semidiscretization        209  (16)
        4.9.1 Discrete Equations                   209  (2)
        4.9.2 Implementation                       211  (10)
        4.9.3 Variational Principle for Large      221  (4)
        Deformation Statics
      4.10 Exercises                               225  (2)
    5 Constitutive Models                          227  (102)
      5.1 Introduction                             227  (1)
      5.2 The Stress--Strain Curve                 228  (5)
        5.2.1 The Tensile Test                     229  (4)
      5.3 One-Dimensional Elasticity               233  (4)
        5.3.1 Small Strains                        233  (2)
        5.3.2 Large Strains                        235  (2)
      5.4 Nonlinear Elasticity                     237  (17)
        5.4.1 Kirchhoff Material                   237  (4)
        5.4.2 Incompressibility                    241  (1)
        5.4.3 Kirchhoff Stress                     242  (1)
        5.4.4 Hypoelasticity                       242  (1)
        5.4.5 Relations between Tangent Moduli     243  (4)
        5.4.6 Cauchy Elastic Material              247  (1)
        5.4.7 Hyperelastic Materials               248  (1)
        5.4.8 Elasticity Tensors                   249  (2)
        5.4.9 Isotropic Hyperelastic Materials     251  (1)
        5.4.10 Neo-Hookean Material                252  (1)
        5.4.11 Modified Mooney--Rivlin Material    253  (1)
      5.5 One-Dimensional Plasticity               254  (8)
        5.5.1 Rate-Independent Plasticity in       254  (3)
        One Dimension
        5.5.2 Extension to Kinematic Hardening     257  (3)
        5.5.3 Rate-Dependent Plasticity in One     260  (2)
        Dimension
      5.6 Multiaxial Plasticity                    262  (19)
        5.6.1 Hypoelastic-Plastic Materials        263  (4)
        5.6.2 J2 Flow Theory Plasticity            267  (2)
        5.6.3 Extension to Kinematic Hardening     269  (2)
        5.6.4 Mohr--Coulomb Constitutive Model     271  (2)
        5.6.5 Drucker--Prager Constitutive Model   273  (1)
        5.6.6 Porous Elastic--Plastic Solids:      274  (3)
        Gurson Model
        5.6.7 Corotational Stress Formulation      277  (2)
        5.6.8 Small-Strain Formulation             279  (1)
        5.6.9 Large-Strain Viscoplasticity         280  (1)
      5.7 Hyperelastic--Plastic Models             281  (11)
        5.7.1 Multiplicative Decomposition of      282  (1)
        Deformation Gradient
        5.7.2 Hyperelastic Potential and Stress    283  (1)
        5.7.3 Decomposition of Rates of            283  (2)
        Deformation
        5.7.4 Flow Rule                            285  (1)
        5.7.5 Tangent Moduli                       286  (2)
        5.7.6 J2 Flow Theory                       288  (3)
        5.7.7 Implications for Numerical           291  (1)
        Treatment of Large Rotations
        5.7.8 Single-Crystal Plasticity            291  (1)
      5.8 Viscoelasticity                          292  (2)
        5.8.1 Small Strains                        292  (1)
        5.8.2 Finite Strain Viscoelasticity        293  (1)
      5.9 Stress Update Algorithms                 294  (20)
        5.9.1 Return Mapping Algorithms for        295  (1)
        Rate-Independent Plasticity
        5.9.2 Fully Implicit Backward Euler        296  (4)
        Scheme
        5.9.3 Application to J2 Flow Theory --     300  (2)
        Radial Return Algorithm
        5.9.4 Algorithmic Moduli                   302  (3)
        5.9.5 Algorithmic Moduli: J2 Flow and      305  (1)
        Radial Return
        5.9.6 Semi-Implicit Backward Euler         306  (1)
        Scheme
        5.9.7 Algorithmic Moduli --                307  (1)
        Semi-Implicit Scheme
        5.9.8 Return Mapping Algorithms for        308  (2)
        Rate-Dependent Plasticity
        5.9.9 Rate Tangent Modulus Method          310  (1)
        5.9.10 Incrementally Objective             311  (1)
        Integration Schemes for Large
        Deformations
        5.9.11 Semi-Implicit Scheme for            312  (2)
        Hyperelastic--Plastic Constitutive
        Models
      5.10 Continuum Mechanics and Constitutive    314  (14)
      Models
        5.10.1 Eulerian, Lagrangian and            314  (1)
        Two-Point Tensors
        5.10.2 Pull-Back, Push-Forward and the     314  (5)
        Lie Derivative
        5.10.3 Material Frame Indifference         319  (2)
        5.10.4 Implications for Constitutive       321  (1)
        Relations
        5.10.5 Objective Scalar Functions          322  (1)
        5.10.6 Restrictions on Elastic Moduli      323  (1)
        5.10.7 Material Symmetry                   324  (1)
        5.10.8 Frame Invariance in                 325  (1)
        Hyperelastic--Plastic Models
        5.10.9 Clausius--Duhem Inequality and      326  (2)
        Stability Postulates
      5.11 Exercises                               328  (1)
    6 Solution Methods and Stability               329  (88)
      6.1 Introduction                             329  (1)
      6.2 Explicit Methods                         330  (7)
        6.2.1 Central Difference Method            330  (2)
        6.2.2 Implementation                       332  (3)
        6.2.3 Energy Balance                       335  (1)
        6.2.4 Accuracy                             336  (1)
        6.2.5 Mass Scaling, Subcycling and         337  (1)
        Dynamic Relaxation
      6.3 Equilibrium Solutions and Implicit       337  (21)
      Time Integration
        6.3.1 Equilibrium and Transient Problems   337  (1)
        6.3.2 Equilibrium Solutions and            338  (1)
        Equilibrium Points
        6.3.3 Newmark β-Equations             338  (1)
        6.3.4 Newton's Method                      339  (2)
        6.3.5 Newton's Method for n Unknowns       341  (2)
        6.3.6 Conservative Problems                343  (1)
        6.3.7 Implementation of Newton's Method    344  (2)
        6.3.8 Constraints                          346  (7)
        6.3.9 Convergence Criteria                 353  (1)
        6.3.10 Line Search                         354  (1)
        6.3.11 The α-Method                  355  (1)
        6.3.12 Accuracy and Stability of           356  (1)
        Implicit Methods
        6.3.13 Convergence and Robustness of       357  (1)
        Newton Iteration
        6.3.14 Selection of Integration Method     358  (1)
      6.4 Linearization                            358  (17)
        6.4.1 Linearization of the Internal        358  (2)
        Nodal Forces
        6.4.2 Material Tangent Stiffness           360  (1)
        6.4.5 Geometric Stiffness                  361  (1)
        6.4.4 Alternative Derivations of           362  (2)
        Tangent Stiffness
        6.4.5 External Load Stiffness              364  (8)
        6.4.6 Directional Derivatives              372  (2)
        6.4.7 Algorithmically Consistent           374  (1)
        Tangent Stiffness
      6.5 Stability and Continuation Methods       375  (16)
        6.5.1 Stability                            375  (3)
        6.5.2 Branches of Equilibrium Solutions    378  (2)
        6.5.3 Methods of Continuation and Arc      380  (2)
        Length Methods
        6.5.4 Linear Stability                     382  (1)
        6.5.5 Symmetric Systems                    383  (1)
        6.5.6 Conservative Systems                 384  (1)
        6.5.7 Remarks on Linear Stability          384  (1)
        Analysis
        6.5.8 Estimates of Critical Points         385  (1)
        6.5.9 Initial Estimates of Critical        386  (5)
        Points
      6.6 Numerical Stability                      391  (16)
        6.6.1 Definition and Discussion            391  (1)
        6.6.2 Stability of a Model Linear          392  (4)
        System: Heat Conduction
        6.6.3 Amplification Matrices               396  (1)
        6.6.4 Amplification Matrix for             397  (1)
        Generalized Trapezoidal Rule
        6.6.5 The z-Transform                      398  (1)
        6.6.6 Stability of Damped Central          399  (2)
        Difference Method
        6.6.7 Linearized Stability Analysis of     401  (2)
        Newmark β-Method
        6.6.8 Eigenvalue Inequality and Time       403  (1)
        Step Estimates
        6.6.9 Element Eigenvalues                  404  (2)
        6.6.10 Stability in Energy                 406  (1)
      6.7 Material Stability                       407  (8)
        6.7.1 Description and Early Work           407  (1)
        6.7.2 Material Stability Analysis          408  (3)
        6.7.3 Material Instability and Change      411  (1)
        of Type of PDEs in 1D
        6.7.4 Regularization                       412  (3)
      6.8 Exercises                                415  (2)
    7 Arbitrary Lagrangian Eulerian Formulations   417  (60)
      7.1 Introduction                             417  (2)
      7.2 ALE Continuum Mechanics                  419  (7)
        7.2.1 Material Motion, Mesh                419  (2)
        Displacement, Mesh Velocity, and Mesh
        Acceleration
        7.2.2 Material Time Derivative and         421  (1)
        Convective Velocity
        7.2.3 Relationship of ALE Description      422  (4)
        to Eulerian and Lagrangian Descriptions
      7.3 Conservation Laws in ALE Description     426  (2)
        7.3.1 Conservation of Mass (Equation of    426  (1)
        Continuity)
        7.3.2 Conservation of Linear and           427  (1)
        Angular Momenta
        7.3.3 Conservation of Energy               428  (1)
      7.4 ALE Governing Equations                  428  (1)
      7.5 Weak Forms                               429  (4)
        7.5.1 Continuity Equation -- Weak Form     430  (1)
        7.5.2 Momentum Equation -- Weak Form       430  (1)
        7.5.3 Finite Element Approximations        430  (2)
        7.5.4 The Finite Element Matrix            432  (1)
        Equations
      7.6 Introduction to the Petrov--Galerkin     433  (9)
      Method
        7.6.1 Galerkin Discretization of the       434  (2)
        Advection--Diffusion Equation
        7.6.2 Petrov--Galerkin Stabilization       436  (1)
        7.6.3 Alternative Derivation of the SUPG   437  (1)
        7.6.4 Parameter Determination              438  (3)
        7.6.5 SUPG Multiple Dimensions             441  (1)
      7.7 Petrov--Galerkin Formulation of          442  (3)
      Momentum Equation
        7.7.1 Alternative Stabilization            443  (1)
        Formulation
        7.7.2 The δviPG Test Function        443  (1)
        7.7.3 Finite Element Equation              444  (1)
      7.8 Path-Dependent Materials                 445  (12)
        7.8.1 Strong Form of Stress Update         444  (2)
        7.8.2 Weak Form of Stress Update           446  (1)
        7.8.3 Finite Element Discretization        446  (1)
        7.8.4 Stress Update Procedures             447  (6)
        7.8.5 Finite Element Implementation of     453  (3)
        Stress Update Procedures in 1D
        7.8.6 Explicit Time Integration            456  (1)
        Algorithm
      7.9 Linearization of the Discrete            457  (3)
      Equations
        7.9.1 Internal Nodal Forces                457  (2)
        7.9.2 External Nodal Forces                459  (1)
      7.10 Mesh Update Equations                   460  (8)
        7.10.1 Introduction                        460  (1)
        7.10.2 Mesh Motion Prescribed A Priori     461  (1)
        7.10.3 Lagrange--Euler Matrix Method       461  (2)
        7.10.4 Deformation Gradient Formulations   463  (2)
        7.10.5 Automatic Mesh Generation           465  (1)
        7.10.6 Mesh Update Using a Modified        466  (1)
        Elasticity Equation
        7.10.7 Mesh Update Example                 467  (1)
      7.11 Numerical Example: An                   468  (3)
      Elastic--Plastic Wave Propagation Problem
      7.12 Total ALE Formulations                  471  (4)
        7.12.1 Total ALE Conservation Laws         471  (2)
        7.12.2 Reduction to Updated ALE            473  (2)
        Conservation Laws
      7.13 Exercises                               475  (2)
    8 Element Technology                           477  (58)
      8.1 Introduction                             477  (2)
      8.2 Element Performance                      479  (8)
        8.2.1 Overview                             479  (4)
        8.2.2 Completeness, Consistency, and       483  (1)
        Reproducing Conditions
        8.2.3 Convergence Results for Linear       484  (2)
        Problems
        8.2.4 Convergence in Nonlinear Problems    486  (1)
      8.3 Element Properties and Patch Tests       487  (9)
        8.3.1 Patch Tests                          487  (1)
        8.3.2 Standard Patch Test                  487  (2)
        8.3.3 Patch Test in Nonlinear Programs     489  (1)
        8.3.4 Patch Test in Explicit Programs      489  (1)
        8.3.5 Patch Tests for Stability            490  (1)
        8.3.6 Linear Reproducing Conditions of     490  (2)
        Isoparametric Elements
        8.3.7 Completeness of Subparametric and    492  (1)
        Superparametric Elements
        8.3.8 Element Rank and Rank Deficiency     493  (1)
        8.3.9 Rank of Numerically Integrated       494  (2)
        Elements
      8.4 Q4 and Volumetric Locking                496  (5)
        8.4.1 Element Description                  496  (1)
        8.4.2 Basis Form of Q4 Approximation       497  (2)
        8.4.3 Locking in Q4                        499  (2)
      8.5 Multi-Field Weak Forms and Elements      501  (13)
        8.5.1 Nomenclature                         501  (1)
        8.5.2 Hu--Washizu Weak Form                501  (2)
        8.5.3 Alternative Multi-Field Weak Forms   503  (1)
        8.5.4 Total Lagrangian Form of the         504  (1)
        Hu--Washizu
        8.5.5 Pressure--Velocity (p--v)            505  (2)
        Implementation
        8.5.6 Element Specific Pressure            507  (1)
        8.5.7 Finite Element Implementation of     508  (2)
        Hu--Washizu
        8.5.8 Simo--Hughes B-Bar Method            510  (1)
        8.5.9 Simo--Rifai Formulation              511  (3)
      8.6 Multi-Field Quadrilaterals               514  (4)
        8.6.1 Assumed Velocity Strain to Avoid     514  (2)
        Volumetric Locking
        8.6.2 Shear Locking and its Elimination    516  (1)
        8.6.3 Stiffness Matrices for Assumed       517  (1)
        Strain Elements
        8.6.4 Other Techniques in Quadrilaterals   517  (1)
      8.7 One-Point Quadrature Elements            518  (9)
        8.7.1 Nodal Forces and B-Matrix            518  (1)
        8.7.2 Spurious Singular Modes              519  (2)
        (Hourglass)
        8.7.3 Perturbation Hourglass               521  (1)
        Stabilization
        8.7.4 Stabilization Procedure              522  (1)
        8.7.5 Scaling and Remarks                  522  (1)
        8.7.6 Physical Stabilization               523  (2)
        8.7.7 Assumed Strain with Multiple         525  (1)
        Integration Points
        8.7.8 Three-Dimensional Elements           526  (1)
      8.8 Examples                                 527  (4)
        8.8.1 Static Problems                      527  (1)
        8.8.2 Dynamic Cantilever Beam              528  (2)
        8.8.3 Cylindrical Stress Wave              530  (1)
      8.9 Stability                                531  (2)
      8.10 Exercises                               533  (2)
    9 Beams and Shells                             535  (62)
      9.1 Introduction                             535  (2)
      9.2 Beam Theories                            537  (3)
        9.2.1 Assumptions of Beam Theories         537  (1)
        9.2.2 Timoshenko (Shear Beam) Theory       538  (1)
        9.2.3 Euler--Bernoulli Theory              539  (1)
        9.2.4 Discrete Kirchhoff and               540  (1)
        Mindlin--Reissner Theories
      9.3 Continuum-Based Beam                     540  (11)
        9.3.1 Definitions and Nomenclature         541  (1)
        9.3.2 Assumptions                          542  (1)
        9.3.3 Motion                               543  (2)
        9.3.4 Nodal Forces                         545  (1)
        9.3.5 Constitutive Update                  545  (2)
        9.3.6 Continuum Nodal Internal Forces      547  (2)
        9.3.7 Mass Matrix                          549  (1)
        9.3.8 Equations of Motion                  550  (1)
        9.3.9 Tangent Stiffness                    550  (1)
      9.4 Analysis of the CB Beam                  551  (12)
        9.4.1 Motion                               551  (3)
        9.4.2 Velocity Strains                     554  (1)
        9.4.3 Resultant Stresses and Internal      555  (1)
        Power
        9.4.4 Resultant External Forces            556  (1)
        9.4.5 Boundary Conditions                  557  (1)
        9.4.6 Weak Form                            558  (1)
        9.4.7 Strong Form                          558  (1)
        9.4.8 Finite Element Approximation         559  (4)
      9.5 Continuum-Based Shell Implementation     563  (15)
        9.5.1 Assumptions in Classical Shell       564  (1)
        Theories
        9.5.2 Coordinates and Definitions          564  (1)
        9.5.3 Assumptions                          565  (1)
        9.5.4 Coordinate Systems                   565  (1)
        9.5.5 Finite Element Approximation of      566  (2)
        Motion
        9.5.6 Local Coordinates                    568  (1)
        9.5.7 Constitutive Equation                569  (1)
        9.5.8 Thickness                            570  (1)
        9.5.9 Master Nodal Forces                  570  (1)
        9.5.10 Mass Matrix                         571  (1)
        9.5.11 Discrete Momentum Equation          571  (1)
        9.5.12 Tangent Stiffness                   572  (1)
        9.5.13 Five Degree-of-Freedom              572  (1)
        Formulation
        9.5.14 Large Rotations                     573  (1)
        9.5.15 Euler's Theorem                     573  (2)
        9.5.16 Exponential Map                     575  (1)
        9.5.17 First-and Second-Order Updates      576  (1)
        9.5.18 Hughes--Winget Update               577  (1)
        9.5.19 Quaternions                         577  (1)
        9.5.20 Implementation                      578  (1)
      9.6 CB Shell Theory                          578  (6)
        9.6.1 Motion                               578  (2)
        9.6.2 Velocity drains                      580  (1)
        9.6.3 Resultant Stresses                   581  (1)
        9.6.4 Boundary Conditions                  582  (1)
        9.6.5 Inconsistencies and                  583  (1)
        Idiosyncrasies of Structural Theories
      9.7 Shear and Membrane Locking               584  (5)
        9.7.1 Description and Definitions          584  (1)
        9.7.2 Shear Locking                        585  (2)
        9.7.3 Membrane Locking                     587  (1)
        9.7.4 Elimination of Locking               588  (1)
      9.8 Assumed Strain Elements                  589  (3)
        9.8.1 Assumed Strain 4-Node                589  (2)
        Quadrilateral
        9.8.2 Rank of Element                      591  (1)
        9.8.3 Nine-Node Quadrilateral              591  (1)
      9.9 One-Point Quadrature Elements            592  (3)
      9.10 Exercises                               595  (2)
    10 Contact-Impact                              597  (46)
      10.1 Introduction                            597  (1)
      10.2 Contact Interface Equations             598  (11)
        10.2.1 Notation and Preliminaries          598  (2)
        10.2.2 Impenetrability Condition           600  (2)
        10.2.3 Traction Conditions                 602  (1)
        10.2.4 Unitary Contact Condition           603  (1)
        10.2.5 Surface Description                 603  (1)
        10.2.6 Interpenetration Measure            604  (1)
        10.2.7 Path-Independent                    605  (1)
        Interpenetration Rate
        10.2.8 Tangential Relative Velocity for    606  (3)
        Interpenetrated Bodies
      10.3 Friction Models                         609  (5)
        10.3.1 Classification                      609  (1)
        10.3.2 Coulomb Friction                    609  (1)
        10.3.3 Interface Constitutive Equations    610  (4)
      10.4 Weak Forms                              614  (10)
        10.4.1 Notation and Preliminaries          614  (1)
        10.4.2 Lag range Multiplier Weak Form      615  (2)
        10.4.3 Contribution of Virtual Power to    617  (1)
        Contact Surface
        10.4.4 Rate-Dependent Penalty              618  (2)
        10.4.5 Interpenetration-Dependent          620  (1)
        Penalty
        10.4.6 Perturbed Lagrangian Weak Form      620  (1)
        10.4.7 Augmented Lagrangian                621  (1)
        10.4.8 Tangential Tractions by Lagrange    622  (2)
        Multipliers
      10.5 Finite Element Discretization           624  (14)
        10.5.1 Overview                            624  (1)
        10.5.2 Lagrange Multiplier Method          624  (5)
        10.5.3 Assembly of Interface Matrix        629  (1)
        10.5.4 Lagrange Multipliers for            629  (1)
        Small-Displacement Elastostatics
        10.5.5 Penalty Method for Nonlinear        630  (1)
        Frictionless Contact
        10.5.6 Penalty Method for                  631  (1)
        Small-Displacement Elastostatics
        10.5.7 Augmented Lagrangian                631  (2)
        10.5.8 Perturbed Lagrangian                633  (4)
        10.5.9 Regularization                      637  (1)
      10.6 On Explicit Methods                     638  (5)
        10.6.1 Explicit Methods                    638  (1)
        10.6.2 Contact in One Dimension            639  (2)
        10.6.3 Penalty Method                      641  (1)
        10.6.4 Explicit Algorithm                  642  (1)
    11 Extended Finite Element Method (XFEM)       643  (38)
      11.1 Introduction                            643  (4)
        11.1.1 Strong Discontinuity            643  (2)
        11.1.2 Weak Discontinuity                  645  (1)
        11.1.3 XFEM for Discontinuities            646  (1)
      11.2 Partition of Unity and Enrichments      647  (1)
      11.3 One-Dimensional XFEM                    648  (8)
        11.3.1 Strong Discontinuity                648  (4)
        11.3.2 Weak Discontinuity                  652  (3)
        11.3.3 Mass Matrix                         655  (1)
      11.4 Multi-Dimension XFEM                    656  (4)
        11.4.1 Crack Modeling                      656  (2)
        11.4.2 Tip Enrichment                      658  (2)
        11.4.3 Enrichment in a Local Coordinate    660  (1)
        System
      11.5 Weak and Strong Forms                   660  (2)
      11.6 Discrete Equations                      662  (6)
        11.6.1 Strain--Displacement Matrix for     665  (3)
        Weak Discontinuity
      11.7 Level Set Method                        668  (2)
        11.7.1 Level Set in 1D                     668  (1)
        11.7.2 Level Set in 2D                     668  (1)
        11.7.3 Dynamic Fracture Growth Using       669  (1)
        Level Set Updates
      11.8 The Phantom Node Method                 670  (3)
        11.8.1 Element Decomposition in 1D         670  (1)
        11.8.2 Element Decomposition in            671  (2)
        Multi-Dimensions
      11.9 Integration                             673  (2)
        11.9.1 Integration for Discontinuous       673  (2)
        Enrichments
        11.9.2 Integration for Singular            675  (1)
        Enrichments
      11.10 An Example of XFEM Simulation          675  (3)
      11.11 Exercise                               678  (3)
    12 Introduction to Multiresolution Theory      681  (40)
      12.1 Motivation: Materials are Structured    681  (4)
      Continua
      12.2 Bulk Deformation of Microstructured     685  (1)
      Continua
      12.3 Generalizing Mechanics to Bulk          686  (10)
      Microstructured Continua
        12.3.1 The Need for a Generalized          686  (1)
        Mechanics
        12.3.2 Major Ideas for a Generalized       687  (1)
        Mechanics
        12.3.3 Higher-Order Approach               688  (1)
        12.3.4 Higher-Grade Approach               689  (2)
        12.3.5 Reinterpretation of                 691  (5)
        Micromorphism for Bulk Microstructured
        Materials
      12.4 Multiscale Microstructures and the      696  (3)
      Multiresolution Continuum Theory
      12.5 Governing Equations for MCT             699  (2)
        12.5.1 Virtual Internal Power              699  (1)
        72.5.2 Virtual External Power              699  (1)
        12.5.3 Virtual Kinetic Power               700  (1)
        12.5.4 Strong Form of MCT Equations        700  (1)
      12.6 Constructing MCT Constitutive           701  (4)
      Relationships
      12.7 Basic Guidelines for RVE Modeling       705  (5)
        12.7.1 Determining RVE Cell Size           706  (1)
        12.7.2 RVE Boundary Conditions             707  (3)
      12.8 Finite Element Implementation of MCT    710  (2)
      12.9 Numerical Example                       712  (6)
        12.9.1 Void-Sheet Mechanism in             712  (1)
        High-Strength Alloy
        12.9.2 MCT Multiscale Constitutive         713  (1)
        Modeling Outline
        12.9.3 Finite Element Problem Setup for    714  (2)
        a Two-Dimensional Tensile Specimen
        12.9.4 Results                             716  (2)
      12.10 Future Research Directions of MCT      718  (1)
      Modeling
      12.11 Exercises                              719  (2)
    13 Single-Crystal Plasticity                   721  (30)
      13.1 Introduction                            721  (2)
      31.2 Crystallographic Description of         723  (3)
      Cubic and Non-Cubic Crystals
        13.2.1 Specifying Directions               724  (1)
        13.2.2 Specifying Planes                   725  (1)
      13.3 Atomic Origins of Plasticity and the    726  (3)
      Burgers Vector in Single Crystals
      13.4 Defining Slip Planes and Directions     729  (6)
      in General Single Crystals
      13.5 Kinematics of Single Crystal            735  (5)
      Plasticity
        13.5.1 Relating the Intermediate           735  (2)
        Configuration to Crystalline Mechanics
        13.5.2 Constitutive Definitions of the     737  (1)
        Plastic Parts of Deformation Rate and
        Spin
        13.5.3 Simplification of the Kinematics    738  (1)
        by Restriction to Small Elastic Strain
        13.5.4 Final Remarks                       739  (1)
      13.6 Dislocation Density Evolution           740  (2)
      13.7 Stress Required for Dislocation         742  (1)
      Motion
      13.8 Stress Update in Rate-Dependent         743  (2)
      Single-Crystal Plasticity
        13.8.1 The Resolved Shear Stress           743  (1)
        13.8.2 The Resolved Shear Stress Rate      743  (1)
        13.8.3 Updating Resolved Shear Stress      744  (1)
        in Rate-Dependent Materials
        13.8.4 Updating the Cauchy Stress          745  (1)
        13.8.5 Adiabatic Temperature Update        745  (1)
      13.9 Algorithm for Rate-Dependent            745  (2)
      Dislocation-Density Based Crystal
      Plasticity
      13.10 Numerical Example: Localized Shear     747  (3)
      and Inhomogeneous Deformation
      13.11 Exercises                              750  (1)
Appendix 1 Voigt Notation                          751  (6)
Appendix 2 Norms                                   757  (4)
Appendix 3 Element Shape Functions                 761  (6)
Appendix 4 Euler Angles From Pole Figures          767  (4)
Appendix 5 Example of Dislocation-Density          771  (6)
Evolutionary Equations
Glossary                                           777  (4)
References                                         781  (14)
Index                                              795

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上