新书报道
当前位置: 首页 >> 电类优秀教材 >> 正文
Organic Solar Cells : Fundamentals, Devices, and Upscaling
发布日期:2015-12-17  浏览

Organic Solar Cells : Fundamentals, Devices, and Upscaling

[Book Description]

Organic photovoltaic (OPV) cells have the potential to make a significant contribution to the increasing energy needs of the future. In this book, 15 chapters written by selected experts explore the required characteristics of components present in an OPV device, such as transparent electrodes, electron- and hole-conducting layers, as well as electron donor and acceptor materials. Design, preparation, and evaluation of these materials targeting highest performance are discussed. This includes contributions on modeling down to the molecular level to device-level electrical and optical testing and modeling, as well as layer morphology control and characterization. The integration of the different components in device architectures suitable for mass production is described. Finally, the technical feasibility and economic viability of large-scale manufacturing using fast inexpensive roll-to-roll deposition technologies is assessed.

[Table of Contents]
Preface                                            xvii
Part I: Materials and Device Architectures
  1 Solution-Processed Donors                      3   (68)
          Beate Burkhart
          Barry C. Thompson
      1.1 Introduction                             3   (7)
      1.2 Design Principles for Bandgap and        10  (5)
      Energy-Level Control of Donor Materials
      1.3 State-of-the-Art Polymer and Small       15  (34)
      Molecule Donors for Organic Solar Cells
        1.3.1 Homopolymers                         15  (2)
        1.3.2 Perfectly Alternating                17  (1)
        Donor/Acceptor Copolymers
        1.3.2.1 BTD-based donor/acceptor           19  (1)
        copolymers
        1.3.2.2 TPD-based donor/acceptor           27  (1)
        copolymers
        1.3.2.3 Diketopyrrolopyrrole-and           28  (1)
        isoindigo-based donor/acceptor
        copolymers
        1.3.2.4 Quinoxaline-based                  33  (1)
        donor/acceptor copolymers
        1.3.2.5 Quinoidal acceptors: TT, TP,       34  (5)
        and ITN
        1.3.3 Random and Semirandom                39  (6)
        Donor/Acceptor Copolymers
        1.3.4 Small Molecule Donors                45  (4)
      1.4 Conclusion and Outlook                   49  (22)
  2 Small-Molecule and Vapor-Deposited Organic     71  (56)
  Photovoltaics
          Richard R. Lunt
          Russell J. Holmes
      2.1 Introduction                             71  (4)
      2.2 Photovoltaic Characteristics             75  (6)
        2.2.1 Thermodynamics and Open-Circuit      77  (4)
        Voltage
      2.3 Excitons                                 81  (4)
        2.3.1 Spin and Intersystem Crossing        82  (2)
        2.3.2 Singlet Fission                      84  (1)
        2.3.3 Implication of Oxygen Ground State   85  (1)
      2.4 Energy Transfer and Exciton Migration    85  (10)
        2.4.1 Exciton Diffusion and Crystalline    92  (1)
        Order
        2.4.2 Exciton Diffusion and                92  (2)
        Photophysical Relaxation
        2.4.3 Exciton Diffusion and Long-Range     94  (1)
        Energy Transfer
      2.5 Vapor Deposition Methods                 95  (6)
        2.5.1 Vacuum Thermal Evaporation           95  (2)
        2.5.2 Organic Vapor-Phase Deposition       97  (2)
        2.5.3 Crystalline Morphology of Vapor      99  (2)
        Deposition
      2.6 Advances in Device Architecture          101 (15)
        2.6.1 Engineering Planar Heterojunction    101 (3)
        OPVs
        2.6.2 Improving Active Layer Properties    104 (2)
        with Structural Templating
        2.6.3 Engineered Nanostructure for         106 (8)
        Enhanced Dissociation唯ulk
        Heterojunction OPVs
        2.6.4 Vapor Deposition Routes to           114 (2)
        Induced Bulk-Heterojunction Formation
      2.7 Conclusions                              116 (11)
  3 Acceptor Materials for Solution-Processed      127 (54)
  Solar Cells
          Youjun He
      3.1 Introduction                             128 (3)
      3.2 Fullerene Acceptor Materials             131 (27)
        3.2.1 The History of Fullerene Acceptor    133 (1)
        Materials
        3.2.1.1 PCBM and PCBM-like derivatives     135 (1)
        3.2.1.2 PCBM multi-adducts and             143 (1)
        PCBM-like multi-adducts
        3.2.1.3 Non-PCBM-like mono-adducts         145 (1)
        3.2.1.4 Non-PCBM-like bis- and             150 (1)
        multi-adducts
        3.2.1.5 Fullerene acceptor materials       154 (3)
        for low bandgap polymer solar cells
        3.2.2 Conclusions Regarding Fullerenic     157 (1)
        Acceptor Materials for High-Performance
        Solar Cells
      3.3 Inorganic Semiconductor Acceptor         158 (9)
      Materials
        3.3.1 CdSe, CdTe, CdS and Related          160 (3)
        Materials
        3.3.2 ZnO and ZnS                          163 (2)
        3.3.3 TiO2                                 165 (1)
        3.3.4 Future Prospects for Inorganic       166 (1)
        Nanoparticle Acceptor Materials
      3.4 Summary                                  167 (14)
  4 Interfacial Layers                             181 (38)
          Riccardo Po
          Chiara Carbonera
          Andrea Bernardi
          Nadia Camaioni
      4.1 Introduction                             181 (1)
      4.2 Charge Collection at Electrode           182 (1)
      Interfaces
      4.3 Roles of Interfacial Layers              183 (6)
        4.3.1 Electrical Effects                   185 (2)
        4.3.2 Optical Effects                      187 (1)
        4.3.3 Mechanical Effects                   188 (1)
        4.3.4 Barrier Effects                      188 (1)
      4.4 Classes of Materials Used as             189 (18)
      Interfacial Layers
        4.4.1 Polymeric Compounds                  189 (1)
        4.4.1.1 PEDOT                              189 (1)
        4.4.1.2 Polymerized triphenylamines and    192 (1)
        carbazoles
        4.4.1.3 Conjugated cationic polymers       193 (1)
        4.4.1.4 Miscellaneous polymers             194 (2)
        4.4.2 Low-Molecular-Weight Organic         196 (1)
        Compounds
        4.4.2.1 Fullerene derivatives and          196 (1)
        carbonaceous materials
        4.4.2.2 Organic salts and metal            197 (1)
        complexes
        4.4.2.3 Miscellaneous                      198 (2)
        4.4.3 Inorganic Compounds                  200 (1)
        4.4.3.1 Metal oxides                       200 (1)
        4.4.3.2 Miscellaneous                      204 (1)
        4.4.4 Hybrid Buffer Layers                 205 (1)
        4.4.4.1 Metal oxides + organic compounds   205 (1)
        4.4.4.2 Other multilayer buffers made      206 (1)
        by miscellaneous materials
        4.4.4.3 Composite materials                207 (1)
      4.5 Deposition Methods                       207 (3)
        4.5.1 Wet Deposition                       208 (1)
        4.5.2 Vacuum Deposition                    209 (1)
      4.6 Outlook                                  210 (9)
  5 Electrodes in Organic Photovoltaic Cells       219 (58)
          Seunghyup Yoo
          Jung-Yong Lee
          Hoyeon Kim
          Jaemin Lee
      5.1 Introduction                             219 (1)
      5.2 Electrodes in OPVs: Their Role and       220 (13)
      Importance
        5.2.1 Overview                             220 (2)
        5.2.2 Effect of Sheet Resistance of        222 (1)
        Electrodes
        5.2.2.1 Effect on the performance of       222 (1)
        individual cells
        5.2.2.2 Considerations for modules         224 (2)
        5.2.3 Optical Role of Electrodes in        226 (3)
        Organic Solar Cells: Effect on the
        Photocurrent Generation
        5.2.4 Choosing the Right Transparent       229 (1)
        Electrode
        5.2.4.1 Correlation between optical and    229 (1)
        electrical properties: figure of merit
        for transparent conductors
        5.2.4.2 Other considerations               230 (3)
      5.3 Examples of Electrodes in OPVs           233 (29)
        5.3.1 Transparent Conductive Oxides        233 (1)
        5.3.1.1 Overview                           233 (1)
        5.3.1.2 TCOs in OPVs                       234 (1)
        5.3.1.3 Pending issues                     235 (2)
        5.3.2 Conducting Polymers                  237 (1)
        5.3.2.1 Overview: working principles       237 (1)
        and potential advantages
        5.3.2.2 Conducting polymers used in OPVs   240 (5)
        5.3.3 Thin Metallic Films                  245 (1)
        5.3.3.1 Overview                           245 (1)
        5.3.3.2 Practical considerations:          246 (1)
        morphological effect
        5.3.3.3 Multilayer transparent             249 (2)
        electrodes based on
        dielectric-metal-dielectric structure
        5.3.4 Nanowire Network                     251 (1)
        5.3.4.1 Overview                           251 (1)
        5.3.4.2 Fabrication of AgNWs               253 (1)
        5.3.4.3 Example of nanowire network        254 (4)
        used in OPVs
        5.3.5 Carbon-Based Nanomaterials: CNTs     258 (1)
        and Graphene
        5.3.5.1 Overview                           258 (1)
        5.3.5.2 Carbon nanotubes for               258 (1)
        transparent electrodes in OPVs
        5.3.5.3 Graphene for transparent           259 (3)
        electrodes in OPVs
      5.4 Summary and Outlook                      262 (15)
  6 Tandem and Multijunction Organic Solar Cells   277 (40)
          Jan Gilot
          Ren? A.J. Janssen
      6.1 Introduction on Tandem Cells             278 (2)
      6.2 History and Current Status of Tandem     280 (4)
      Solar Cells
        6.2.1 History of Tandem Solar Cells        280 (3)
        6.2.2 High-Efficiency Tandem Solar Cells   283 (1)
      6.3 Intermediate Layers                      284 (8)
        6.3.1 Materials                            285 (1)
        6.3.2 Aligning of Energy Levels of ET      286 (3)
        and HT Layers in the Intermediate Layer
        6.3.3 The Use of PEDOT as HT layer in      289 (1)
        Solution-Processed Tandem Solar Cells
        6.3.4 Triple- and Multiple-Junction        290 (2)
        Solar Cells Leading to High
        Open-Circuit Voltages
      6.4 Optimization                             292 (7)
        6.4.1 Optimization of                      294 (4)
        Solution-Processed Tandem Cells
        6.4.2 Optimization of Evaporated Tandem    298 (1)
        Solar Cells
      6.5 Characterization of Organic Tandem       299 (4)
      Solar Cells
        6.5.1 Determination of Power Conversion    300 (1)
        Efficiency
        6.5.2 Determination of External Quantum    301 (2)
        Efficiency
      6.6 Alternative Constructions of Tandem      303 (2)
      Solar Cells
        6.6.1 Tandem Cells Connected in Parallel   303 (1)
        6.6.2 Stacked, Folded and Laminated        304 (1)
        Discrete Cells
        6.6.3 Combination of Inorganic and         305 (1)
        Organic Subcells
      6.7 Conclusion                               305 (12)
Part II: Characterization, Modeling, and
Fundamental Insights
  7 Bulk Heterojunction Morphology Control and     317 (50)
  Characterization
          Tao Wang
          David G. Lidzey
      7.1 Introduction                             318 (2)
      7.2 Organization of Polymers and             320 (4)
      Fullerenes at the Molecular Level
      7.3 Organization of Polymers and             324 (5)
      Fullerenes during Solvent Casting
      7.4 Miscibility of the Polymer and           329 (4)
      Fullerene
      7.5 Phase Separation and Domain Size         333 (4)
      7.6 Impact of Solvent Additives on           337 (2)
      Morphology
      7.7 Post-Deposition Processes and            339 (11)
      Techniques
        7.7.1 Impact of Thermal Annealing on       339 (1)
        Nanoscale Morphology and Optoelectronic
        Properties
        7.7.1.1 Two contrasting effects on         339 (1)
        structural order and device performance
        7.7.1.2 Time-resolved morphology           341 (4)
        characterization during thermal
        annealing
        7.7.2 Impact of Solvent Annealing on       345 (4)
        Nanoscale Morphology and Optoelectronic
        Properties
        7.7.3 Comparison between Thermal and       349 (1)
        Solvent Annealing
      7.8 Vertical Component Distribution          350 (5)
      7.9 A Brief Summary of Characterization      355 (2)
      Techniques
      7.10 Conclusions                             357 (10)
  8 Optical Modeling and Light Management in       367 (62)
  Organic Photovoltaic Devices
          Olle Ingan舖
          Zheng Tang
          Jonas Bergqvist
          Kristofer Tvingstedt
      8.1 Introduction                             367 (2)
      8.2 Optical Modeling of Materials            369 (4)
      8.3 Optical Modeling of Devices              373 (24)
        8.3.1 The Transfer Matrix Method           374 (11)
        8.3.2 Optical Electrical Field             385 (1)
        Distribution from Simulations
        8.3.2.1 Light Redistribution in            386 (1)
        Standard and Nonstandard Geometries
        8.3.2.2 Quantum Efficiencies of Charge     386 (1)
        Generation
        8.3.2.3 Spatial Distribution of Power      391 (2)
        Dissipation
        8.3.3 Integrated Power Dissipation for     393 (1)
        Polychromatic Illumination
        8.3.4 Coherence and Incoherence Mixed      394 (1)
        8.3.4.1 Anisotropy in Multilayers          397 (1)
      8.4 Light Management in OPVs                 397 (5)
        8.4.1 One Transparent Electrode and One    398 (1)
        Reflective
        8.4.1.1 Optical Spacers                    398 (1)
        8.4.2 Transparent Devices                  399 (2)
        8.4.3 Optical Cavities                     401 (1)
      8.5 Out of Planarity祐tructured OPVs         402 (8)
        8.5.1 Microstructured Interfaces in OPV    402 (2)
        8.5.2 Nano- and Microstructured            404 (2)
        Interfaces in OPV
        8.5.3 Plasmonics                           406 (1)
        8.5.3.1 Plasmons at Planar                 407 (1)
        Metal/Dielectric Interfaces
        8.5.3.2 Plasmons at Nanoparticle           408 (2)
        Metal/Dielectric Interfaces
      8.6 The Solar Day and the Solar Year         410 (2)
      8.7 Optical Imaging of Processing of         412 (1)
      Polymer Photovoltaic Modules
      8.8 Summary                                  413 (16)
  9 Spectroscopy of Charge-Carrier                 429 (68)
  Dynamics友rom Generation to Collection
          Sarah R. Cowan
          Natalie Banerji
      9.1 Introduction                             430 (3)
      9.2 Controversy and Uncertainty Regarding    433 (8)
      the Physical Concepts in a BHJ Solar Cell
      9.3 Overview of Spectroscopic and            441 (12)
      Electrical Methods for Probing Internal
      Processes
        9.3.1 Absorption/Transmission              441 (4)
        Spectroscopy
        9.3.2 Photoluminescence                    445 (1)
        9.3.3 Transient and Photoinduced           446 (1)
        Absorption Spectroscopy
        9.3.4 Transient Microwave Conductivity     447 (1)
        9.3.5 Photoelectron Spectroscopies         448 (2)
        9.3.6 Transient                            450 (1)
        Photocurrent/Photovoltage Measurements
        9.3.7 Internal/External Quantum            451 (2)
        Efficiency Measurement
      9.4 Case Study: Photoexcitation and          453 (6)
      Charge Separation
      9.5 Case Study: Role of the Charge           459 (10)
      Transfer State in Charge Dissociation and
      Recombination
      9.6 Case Study: Role of the Internal         469 (5)
      Field in Charge Collection
      9.7 Case Study: Bias- and Charge             474 (8)
      Density-Dependent Charge-Carrier
      Recombination
      9.8 Case Study: Role of the Contacts in      482 (1)
      Charge Collection
      9.9 Summary                                  483 (14)
  10 Modeling OPV Performance柚orphology,          497 (40)
  Transport and Recombination
          Chris Groves
      10.1 Introduction to Modeling and Charge     497 (4)
      Transport in Organic Materials
        10.1.1 Charge Transport幽opping and        498 (2)
        Disorder
        10.1.2 Charge Transport友unctional         500 (1)
        Dependencies
      10.2 Methods and Applications                501 (14)
        10.2.1 Kinetic Monte Carlo                 501 (1)
        10.2.1.1 Monte Carlo method and rate       502 (1)
        equations
        10.2.1.2 Electrostatic interactions and    504 (1)
        energetic disorder
        10.2.1.3 Injection                         504 (1)
        10.2.1.4 Queuing                           505 (1)
        10.2.1.5 Morphology                        506 (1)
        10.2.1.6 Calculating Coulomb               508 (1)
        interactions
        10.2.2 Drift-Diffusion                     508 (1)
        10.2.2.1 Current continuity and            509 (1)
        recombination
        10.2.2.2 Drift, diffusion and the          512 (1)
        Einstein relation
        10.2.2.3 Electrostatics and boundary       513 (1)
        conditions
        10.2.2.4 Solution of equations             514 (1)
        10.2.3 Master Equation                     514 (1)
      10.3 Charge Transport                        515 (3)
      10.4 Recombination                           518 (5)
        10.4.1 Geminate Recombination              518 (3)
        10.4.2 Non-geminate Recombination          521 (2)
      10.5 Charge Injection and Extraction         523 (2)
      10.6 Devices                                 525 (1)
      10.7 Summary and Outlook                     526 (11)
  11 Modeling the Electronic and Optical           537 (54)
  Processes in Organic Solar Cells: Density
  Functional Theory and Beyond
          Jean-Luc Br馘as
          Veaceslav Coropceanu
          Curtis Doiron
          Yao-Tsung Fu
          Thomas K?rzd?rfer
          Laxman Pandey
          Chad Risko
          John Sears
          Bing Yang
          Yuan ping Yi
          Cairong Zhang
      11.1 Introduction                            538 (2)
      11.2 Density Functional Theory               540 (17)
      Description of the Lowest Excited States
      in Small-Gap Polymers and D/A Complexes
        11.2.1 Recent Advances in DFT              541 (5)
        Methodologies
        11.2.2 Nature of the Lowest Excitations    546 (5)
        in Small-Gap Polymers
        11.2.3 Donor/Acceptor Charge-Transfer      551 (6)
        Excitations
      11.3 Exciton-Dissociation and                557 (11)
      Charge-Recombination Processes at
      Donor/Acceptor Interfaces
        11.3.1 Evaluation of the Electronic        558 (2)
        Couplings and Electron-Transfer Rates
        11.3.2 The Pentacene-C60 Complex           560 (4)
        11.3.3 Oligothiophene/Fullerene and        564 (4)
        Oligothiophene/Perylenediimide Complexes
      11.4 Molecular Dynamics Description of       568 (5)
      the Pentacene-C60 Interface
      11.5 Synopsis                                573 (18)
Part III: Technology, Lifetime, and Production
  12 Flexible Substrates and Barriers              591 (48)
          Yulia Galagan
      12.1 Substrates                              592 (17)
        12.1.1 Metal Foil Substrates               592 (1)
        12.1.2 Flexible Plastic Substrates         593 (3)
        12.1.3 Glass Substrates                    596 (1)
        12.1.4 Substrate Properties                596 (1)
        12.1.4.1 Electrical properties             598 (1)
        12.1.4.2 Surface quality                   603 (1)
        12.1.4.3 Surface energy of the             604 (1)
        substrates
        12.1.4.4 Dimensional stability             604 (1)
        12.1.4.5 Optical properties                606 (1)
        12.1.4.6 Stability under UV exposure       608 (1)
        12.1.4.7 Solvent resistance                608 (1)
        12.1.4.8 Impact of environmental           609 (1)
        conditions
      12.2 Encapsulation and Barriers              609 (30)
        12.2.1 Requirements for the Barrier        612 (1)
        12.2.2 Single-Layer Barrier                613 (2)
        12.2.3 Multilayer Barrier Coatings         615 (3)
        12.2.4 Mechanical Properties of            618 (2)
        Organic/Inorganic Barrier Films
        12.2.5 Solution-Processable Barriers       620 (1)
        12.2.6 Methods of Applying Barriers        621 (2)
        12.2.7 Side Leakage                        623 (2)
        12.2.8 Conclusions                         625 (14)
  13 Large-Area Processing of Organic              639 (24)
  Photovoltaics
          Roar R. S?ndergaard
          Markus H?sel
          Frederik C. Krebs
      13.1 Introduction                            639 (2)
      13.2 Established Noncontact Coating          641 (3)
      Techniques
        13.2.1 Knife Coating                       641 (2)
        13.2.2 Slot-Die Coating                    643 (1)
      13.3 Printing Techniques                     644 (5)
        13.3.1 Screen Printing                     644 (2)
        13.3.2 Flexoprinting                       646 (2)
        13.3.3 Gravure Printing                    648 (1)
      13.4 "Printing" and Coating through          649 (3)
      Droplets and Brushes
        13.4.1 Inkjet Printing                     650 (1)
        13.4.2 Spray Coating                       651 (1)
        13.4.3 Brush Painting                      652 (1)
      13.5 Lamination                              652 (1)
        13.5.1 Cold Lamination                     652 (1)
        13.5.2 Hot Lamination                      653 (1)
        13.5.3 UV-Lamination                       653 (1)
      13.6 Device Testing                          653 (1)
      13.7 Demonstrations of Device Integration    654 (2)
      13.8 Summary and Outlook                     656 (7)
  14 Module Design, Fabrication, and               663 (50)
  Characterization
          Roland R?sch
          Harald Hoppe
      14.1 Motivation                              664 (3)
      14.2 Architecture of Polymer Solar Cells     667 (2)
      14.3 Material Properties                     669 (3)
        14.3.1 Photoactive Materials               669 (1)
        14.3.2 Charge Carrier                      670 (2)
        Transport/Blocking Layers
        14.3.3 Electrodes                          672 (1)
      14.4 Monolithic Polymer Solar Modules        672 (2)
      14.5 Efficient Module Design                 674 (7)
      14.6 Characterization Methods                681 (10)
        14.6.1 Current-Voltage Characterization    681 (4)
        14.6.2 Imaging Methods                     685 (6)
      14.7 Roll-to-Roll Processing裕echnology      691 (7)
      and Challenges
      14.8 Lifetime Measurements of Polymer        698 (4)
      Solar Modules
      14.9 Summary and Outlook                     702 (11)
  15 Stability of Organic Photovoltaic Cells:      713
  Failure Mechanisms and Operational Stability
          Eszter Voroshazi
      15.1 Introduction                            714 (1)
      15.2 Failure Mechanisms in Photovoltaic      715 (28)
      Cells
        15.2.1 Degradation Mechanisms of the       716 (1)
        Photoactive Layer
        15.2.1.1 Degradation mechanisms in         716 (1)
        polymer: fullerene blends
        15.2.1.2 Physical degradation of the       716 (1)
        polymer: fullerene blend morphology
        15.2.1.3 Chemical degradation of the       720 (1)
        polymer: fullerene blend
        15.2.1.4 Degradation mechanisms of         726 (4)
        small-molecule: fullerene blends
        15.2.2 Degradation Mechanisms of the       730 (1)
        Buffer Layers
        15.2.2.1 Degradation mechanisms of hole    730 (1)
        transport layers
        15.2.2.2 Degradation mechanisms of the     734 (3)
        electron transport layers
        15.2.3 Degradation Mechanisms Linked to    737 (1)
        the Electrodes
        15.2.3.1 Degradation mechanisms of         737 (1)
        indium tin oxide
        15.2.3.2 Degradation mechanisms of         739 (3)
        metal electrodes
        15.2.4 Summary                             742 (1)
      15.3 Current Device Stability of OPVs        743 (13)
        15.3.1 Current Standards and Protocols     744 (4)
        for Lifetime Evaluation
        15.3.2 State-of-the-Art Operational        748 (8)
        Stability of OPVs
      15.4 Conclusions and Outlook                 756
 

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上