
Practical Microwave Circuits
[BOOK DESCRIPTION]
This book differentiates itself by presenting microwave and RF technology from a circuit design viewpoint, rather than a set of electromagnetic problems. The emphasis is on gaining a practical understanding of often overlooked but vital physical processes. This resource provides microwave circuit engineers with analytical techniques for unders
[TABLE OF CONTENTS]
Preface xvii
Chapter 1 Transmission Lines 1 (30)
1.1 Transmission Lines 1 (13)
1.1.1 Fundamental Relations 1 (3)
1.1.2 Characteristic Impedance 4 (1)
1.1.3 Lossy Transmission Lines 5 (1)
1.1.4 Conditions at the Ends of 6 (1)
Transmission Lines
1.1.4.1 Reflection Coefficient 6 (2)
1.1.4.2 Return Loss and VSWR 8 (1)
1.1.4.3 Transmission Coefficient 9 (1)
1.1.4.4 Equivalent Circuits 10 (1)
1.1.5 Matrix Relationships 11 (2)
1.1.6 Input Impedance and Power Transfer 13 (1)
1.2 Practical Considerations 14 (9)
1.2.1 Transmission Line Types 15 (1)
1.2.1.1 Parallel-Wire Line 15 (1)
1.2.1.2 Coaxial Line 15 (1)
1.2.1.3 Planar Transmission Structures 16 (1)
1.2.2 Properties 17 (1)
1.2.2.1 TEM Modes, Group Velocity, and 17 (3)
the Quasi-TEM Approximation
1.2.2.2 Quasistatic Analysis 20 (1)
1.2.2.3 Loss 20 (2)
1.2.2.4 Nonhomogeneous Lines 22 (1)
1.3 Application: RC Transmission Line 23 (1)
1.4 Application: Multisection 24 (7)
Quarter-Wave Transformer
Chapter 2 Coupled Transmission Lines and 31 (36)
Modal Analysis
2.1 Even- and Odd-Mode Analysis 31 (10)
2.1.1 Even and Odd Modes 31 (2)
2.1.2 Even- and Odd-Mode Characteristics 33 (2)
2.1.3 Coupled-Line Analysis 35 (1)
2.1.4 Application: Coupled-Line 36 (4)
Directional Coupler
2.1.5 Effect of Unequal Modal Phase 40 (1)
Velocities
2.2 General, Multiple Coupled Lines 41 (10)
2.2.1 R, L, G, and C Matrices 41 (2)
2.2.2 Transmission Line Equations 43 (3)
2.2.3 Matrices 46 (3)
2.2.4 Application: Lange Coupler 49 (2)
2.3 Balun Design 51 (16)
2.3.1 Balun Properties 52 (2)
2.3.2 Application: Parallel-Strip Balun 54 (3)
2.3.3 Application: Marchand Balun 57 (5)
2.3.4 Application: Half-Wave Balun 62 (5)
Chapter 3 Scattering Parameters 67 (46)
3.1 Circuit Description in Terms of Wave 68 (9)
Quantities
3.1.1 Voltage Waves and Power Waves 68 (2)
3.1.2 The Scattering Matrix 70 (3)
3.1.3 S-Parameter Renormalization 73 (1)
3.1.4 Circuit Interconnections 73 (4)
3.2 Properties of the Scattering Matrix 77 (11)
3.2.1 General Properties 77 (2)
3.2.2 Two-Ports 79 (1)
3.2.3 Three-Ports 80 (3)
3.2.4 Application: Baluns 83 (1)
3.2.5 Four-Ports 84 (4)
3.3 S Parameter Analysis of Two-Ports 88 (8)
3.3.1 Gain and Reflection Coefficients 88 (1)
3.3.1.1 Gain 89 (3)
3.3.1.2 Input and Output Reflection 92 (1)
Coefficients
3.3.1.3 Determining S Parameters from 93 (2)
Nodal Analysis
3.3.2 Two-Port Gain Definitions 95 (1)
3.4 Stability 96 (12)
3.4.1 Two-Port Stability 96 (1)
3.4.2 Port Terminations and External 97 (4)
Stability
3.4.3 General Linear Circuit Stability 101 (1)
3.4.3.1 A More General View of External 101 (2)
Stability
3.4.3.2 Internal Stability 103 (2)
3.4.3.3 Interface Stability 105 (3)
3.5 Transfer Scattering Matrix 108 (5)
Chapter 4 Matching Circuits 113 (54)
4.1 Fundamentals 114 (1)
4.1.1 Power Transfer and Port Impedances 114 (1)
4.1.2 Impedance Normalization 115 (1)
4.2 Narrowband Matching 115 (7)
4.2.1 L-Section Matching Circuits Using 116 (2)
LC Elements or Stubs
4.2.2 Realization of L and C Elements 118 (1)
with Transmission Lines
4.2.3 Series-Line Matching 119 (1)
4.2.4 Quarter-Wave Transformer Matching 119 (2)
4.2.5 Simple Broadbanding Technique 121 (1)
4.3 Transmission-Line Transformers 122 (9)
4.3.1 Wirewound Impedance Transformer 122 (1)
4.3.2 Toroidal Balun 123 (3)
4.3.3 Transmission Line 126 (5)
“r;Autotransformer”r;
4.4 Classical Synthesis 131 (16)
4.4.1 Matching Limitations 131 (1)
4.4.2 Prototype Networks 132 (1)
4.4.2.1 Series RL or Shunt RC 132 (2)
4.4.2.2 Shunt RL or Series RC Loads 134 (1)
4.4.3 Normalization and Frequency 134 (1)
Scaling
4.4.4 Load Scaling and the Decrement 135 (4)
4.4.5 Examples 139 (1)
4.4.5.1 Low-Pass Matching Circuit 139 (3)
4.4.5.2 Bandpass Matching Circuit 142 (2)
4.4.6 Impedance Transformations 144 (3)
4.5 Distributed Networks 147 (12)
4.5.1 Simple Resonator Equivalents 148 (1)
Based on Slope Parameters
4.5.2 Converting Series Elements to 149 (3)
Shunt
4.5.2.1 Example: Conversion of a Series 152 (1)
Resonator to Shunt
4.5.2.2 Impedance and Admittance 152 (4)
Inverters
4.5.2.3 Example: Use of Lumped-Element 156 (2)
Inverters
4.5.3 Richards' Transformation 158 (1)
4.5.3.1 Example: Low-Pass Matching 159 (1)
Circuit
4.6 Modern Methods 159 (8)
4.6.1 Direct Optimization 160 (2)
4.6.2 Real Frequency Method 162 (2)
4.6.3 Synthesis and Parasitic Absorption 164 (3)
Chapter 5 Circuit Analysis 167 (28)
5.1 Network Graph Analysis 167 (18)
5.1.1 General Network Graphs 168 (5)
5.1.2 Example: A Terminated Two-Port 173 (3)
5.1.3 S Parameters and Mason's Rule 176 (2)
5.1.4 S-Parameter Examples 178 (1)
5.1.4.1 Input Reflection Coefficient 178 (3)
5.1.4.2 Transducer Gain 181 (1)
5.1.4.3 Interface Mismatch in Cascaded 182 (3)
Two-Ports
5.2 Nodal Analysis 185 (10)
5.2.1 Indefinite Admittance Matrix 185 (1)
5.2.1.1 Matrix Stamps 186 (1)
5.2.1.2 Voltage-Controlled Current 187 (1)
Source
5.2.1.3 Grounded Elements 188 (2)
5.2.2 Matrix Reduction 190 (5)
Chapter 6 Circuit and Element Modeling 195 (36)
6.1 Circuit Characterization 195 (16)
6.1.1 Wave and I/V Characterization 196 (1)
6.1.2 Characterization of Discrete 196 (1)
Components
6.1.2.1 Measurement and Application 196 (3)
6.1.2.2 Lumped-Element Model 199 (2)
6.1.3 EM-Simulated Circuit Elements 201 (1)
6.1.3.1 EM Simulators 201 (1)
6.1.3.2 De-Embedding 202 (2)
6.1.3.3 EM Database Elements 204 (1)
6.1.3.4 Use of EM Results in Nonlinear 205 (2)
Analysis
6.1.4 Correction of Reference-Plane 207 (2)
Locations
6.1.5 De-Embedding by Negative Images 209 (2)
6.2 Some Useful Nonexistent Components 211 (9)
6.2.1 Transformer 211 (4)
6.2.2 Gyrator 215 (1)
6.2.2.1 Transformers Modeled by Gyrators 216 (3)
6.2.2.2 Circulator Model 219 (1)
6.2.2.3 Current Sensor 219 (1)
6.2.2.4 Controlled Sources 220 (1)
6.3 Some Problematical Circuit Elements 220 (11)
6.3.1 Bond Wires 222 (2)
6.3.2 Bond Wires to Chips 224 (1)
6.3.3 Cell Interconnections in Large 224 (2)
Devices
6.3.4 Housing Effects 226 (1)
6.3.5 Transmission-Line Loss 227 (1)
6.3.6 Thick Metal in EM Simulations 228 (1)
6.3.7 Poorly Modeled Circuit Elements 228 (3)
Chapter 7 Active Two-Ports 231 (50)
7.1 Amplifier Theory 231 (16)
7.1.1 Summary of Previous Results 231 (1)
7.1.1.1 Gain 231 (2)
7.1.1.2 Input and Output Reflection 233 (1)
Coefficients
7.1.1.3 External Stability 233 (2)
7.1.2 Gain Circles 235 (1)
7.1.3 Simultaneous Conjugate Match 236 (2)
7.1.4 Figures of Merit for Solid-State 238 (1)
Devices
7.1.4.1 Maximum Available Gain and 238 (1)
Maximum Stable Gain
7.1.4.2 fmax and ft 238 (3)
7.1.5 Power Considerations 241 (3)
7.1.6 Distortion 244 (3)
7.2 Noise 247 (7)
7.2.1 Noise Temperature and Noise Figure 247 (1)
7.2.1.1 Noise Temperature 248 (2)
7.2.1.2 Noise Figure 250 (1)
7.2.2 Noise Figure Optimization 250 (2)
7.2.3 Noise Figure of an Attenuator 252 (1)
7.2.4 Cascaded Stages 253 (1)
7.3 Amplifier Design 254 (27)
7.3.1 Device Bias in Amplifier Design 254 (1)
7.3.1.1 Bipolar Devices 254 (1)
7.3.1.2 FETs 255 (1)
7.3.2 Narrowband Amplifier Design 256 (1)
7.3.2.1 Matching Approach 256 (1)
7.3.2.2 Example: Low-Noise Amplifier 257 (3)
7.3.3 Broadband Design Using 260 (1)
Negative-Image Models
7.3.3.1 Negative-Image Modeling 261 (2)
7.3.3.2 Example: LNA Design Using 263 (5)
Negative-Image Modelling
7.3.4 Small-Signal Power Amplifier 268 (1)
Design
7.3.4.1 Power Amplifier Design 268 (2)
7.3.4.2 Example: Small-Signal, Class-A 270 (3)
Amplifier
7.3.5 Amplifier Design for Dynamic Range 273 (1)
7.3.5.1 Dynamic Range in FET Amplifiers 273 (2)
7.3.5.2 Wide Dynamic Range Bipolar 275 (1)
Transistor Amplifiers
7.3.5.3 Example: Wide Dynamic Range FET 276 (5)
Amplifier
Chapter 8 Balanced and Quadrature-Coupled 281 (40)
Circuits
8.1 90- and 180-Degree Hybrid Junctions 281 (15)
8.1.1 Characteristics of Hybrids 281 (2)
8.1.2 Quadrature Hybrids 283 (1)
8.1.2.1 Coupled-Line Hybrid 283 (1)
8.1.2.2 Branch-Line Hybrid 284 (1)
8.1.2.3 Lumped-Element Quadrature 284 (5)
Hybrids
8.1.3 180-Degree Hybrids 289 (1)
8.1.3.1 Rat-Race Hybrid 289 (1)
8.1.3.2 Rat-Race Hybrid with Unequal 290 (2)
Power Division
8.1.3.3 Broadband Rat-Race Hybrid 292 (1)
8.1.3.4 Marchand Hybrid 293 (1)
8.1.3.5 Lumped-Element 180-Degree Hybrid 293 (2)
8.1.4 Practical Considerations 295 (1)
8.2 Quadrature-Coupled Circuits 296 (14)
8.2.1 The Terminated Quadrature Hybrid 297 (4)
8.2.2 Quadrature-Coupled Amplifier 301 (1)
8.2.2.1 Gain and Port Reflection 301 (3)
Coefficients
8.2.2.2 Large-Signal Performance 304 (1)
8.2.2.3 Noise 305 (5)
8.3 Balanced Amplifiers Using Baluns and 310 (11)
180-Degree Hybrids
8.3.1 The Terminated Balun 310 (1)
8.3.1.1 Input Reflection Coefficient 310 (3)
8.3.1.2 Even- and Odd-Mode Port 313 (3)
Reflection Coefficients
8.3.2 Balun-Coupled Balanced Circuits 316 (1)
8.3.3 Even Harmonics and Even-Order 316 (2)
Distortion
8.3.4 Hybrid-Coupled Balanced Circuits 318 (3)
About the Author 321 (2)
Index 323