
Laser Surface Modification and Adhesion
[BOOK DESCRIPTION]
The book provides a unique overview on laser techniques and applications for the purpose of improving adhesion by altering surface chemistry and topography/morphology of the substrate. It details laser surface modification techniques for a wide range of industrially relevant materials (plastics, metals, ceramics, composites) with the aim to improve and enhance their adhesion to other materials. The joining of different materials is of critical importance in the fabrication of many and varied products.
[TABLE OF CONTENTS]
Preface xv
Part 1: Laser Surface Treatment/Modification to
Enhance Adhesion
1 Nd:YAG Laser Surface Treatment of Various 3 (52)
Materials to Enhance Adhesion
A. Buchman
M. Rotel
H. Dodiuk-Kenig
1.1 Introduction 4 (9)
1.1.1 Surface Pretreatment for Adhesive 4 (1)
Bonding
1.1.2 Pretreatment Processes - State of 5 (2)
the Art
1.1.3 Solid State Nd:YAG Laser 7 (5)
1.1.4 The Aim of the Current Research 12 (1)
1.2 Methodology 13 (1)
1.3 Experimental 13 (4)
1.3.1 Materials 13 (1)
1.3.2 Laser Parameters 14 (1)
1.3.3 Visual Observation 14 (1)
1.3.4 SEM Observation of Treated 15 (1)
Surfaces
1.3.5 XPS 15 (1)
1.3.6 Contact Angle 15 (1)
1.3.7 FTIR 16 (1)
1.3.8 Joint Strength 16 (1)
1.3.8.1 Shear Strength of Joints 16 (1)
1.3.8.2 Tensile Strength of Joints 16 (1)
1.4 Results 17 (32)
1.4.1 Polypropylene (PP) 17 (1)
1.4.1.1 Contact Angle 20 (1)
1.4.1.2 FTIR Results 20 (1)
1.4.1.3 Joint Strength Measurements 21 (5)
1.4.2 Aluminum (2024 T3) 26 (1)
1.4.2.1 Contact Angle 28 (1)
1.4.2.2 FTIR Results 29 (1)
1.4.2.3 Joint Strength Measurements 30 (2)
1.4.3 Polyimide (Kapton) 32 (1)
1.4.3.1 Contact Angle 35 (1)
1.4.3.2 FTIR Results 35 (1)
1.4.3.3 Joint Strength Measurements 36 (4)
1.4.4 Open Time 40 (1)
1.4.5 Silicone Rubber 40 (1)
1.4.5.1 Contact Angle 44 (1)
1.4.5.2 FTIR Results 44 (1)
1.4.5.3 Joint Strengths Measurements 44 (5)
1.5 Conclusions 49 (2)
References 51 (4)
2 Effects of Excimer Laser Treatment on 55 (48)
Self-Adhesion Strength of Some Commodity (PS,
PP) and Engineering (ABS) Plastics
Erol Sancaktar
Hui Lu
Nongnard Sunthonpagasit
2.1 Introduction 56 (1)
2.2 Background and Literature Survey 56 (9)
2.2.1 Excimer Laser Surface Treatment 56 (1)
2.2.1.1 Overview of Excimer Laser 56 (1)
Processing
2.2.1.2 Mechanism of Thermal-oxidation 58 (1)
by Laser Irradiation
2.2.1.3 Mechanism of Photo-oxidation by 58 (1)
Laser Irradiation
2.2.1.4 The Mathematical Models of 59 (6)
Excimer Laser Surface Modification
2.3 Ultrasonic Welding of Thermoplastics 65 (6)
2.3.1 Overview of Ultrasonic Welding 65 (1)
2.3.2 The Components of Ultrasonic 66 (1)
Welder
2.3.3 Mechanism of Ultrasonic Welding 66 (1)
and Structure Development at
Semicrystalline Interface
2.3.4 Modeling of Ultrasonic Welding 67 (2)
2.3.5 Minimum Flow Velocity 69 (1)
2.3.6 Energy Directors 69 (1)
2.3.7 The Effect of Pressure Control 69 (1)
2.3.8 The Effect of Ultrasonic Amplitude 70 (1)
2.3.9 The Effect of Trigger Pressure 70 (1)
2.3.10 The Effect of Weld Time 70 (1)
2.3.11 The Effect of Horn Down Speed 70 (1)
2.3.12 Ultrasonic Weldability of 71 (1)
Thermoplastics
2.4 Experimental Procedures 71 (3)
2.4.1 Sample Preparation 71 (1)
2.4.1.1 Materials 71 (1)
2.4.1.2 Injection Molding 71 (1)
2.4.1.3 Preparation of samples for 73 (1)
laser treatment and welding experiments
2.4.2 Processing 74 (1)
2.4.2.1 Excimer Laser Treatment 74 (1)
2.4.2.2 Ultrasonic Welding 74 (1)
2.4.3 Tensile Testing 74 (1)
2.5 Results and Discussion 74 (20)
2.5.1 The Effect of Ultrasonic Weld 74 (3)
Parameters on the Weld Strength of PP
2.5.2 The Effect of Laser Treatment on 77 (1)
the Ultrasonic Weld Strength
2.5.2.1 The Effect of Laser Treatment 77 (1)
on Weld Strength of PP
2.5.2.2 The Effect of Laser Treatment 81 (1)
on Weld Strengths of PS and ABS
2.5.2.3 The Effect of Pulse Number on 84 (1)
the Weld Strength of PS and ABS
2.5.2.4 The Effect of Laser Pulse 87 (1)
Energy on Weld Strength of PS and ABS
2.5.2.5 The Effect of Laser Pulse 91 (3)
Frequency on Weld Strength of PS and ABS
2.6 Summary and Conclusions 94 (3)
References 97 (6)
3 Laser Surface Pre-Treatment of Carbon 103(36)
Fiber-Reinforced Plastics (CFRPs) for
Adhesive Bonding
F. Fischer
S. Kreling
K. Dilger
3.1 Introduction 103(2)
3.2 State-of-Research 105(5)
3.2.1 Interaction of Laser Radiation 105(3)
with Plastics
3.2.2 Laser Pre-treatment of 108(2)
Fiber-reinforced Plastic
3.3 Materials and Methods 110(2)
3.4 Laser Sources and Principles 112(9)
3.4.1 Laser Processing Strategies 114(2)
3.4.2 Mid-UV Laser 116(2)
3.4.3 Near-UV Laser 118(1)
3.4.4 Near-IR Laser 119(1)
3.4.5 Mid-IR Laser 120(1)
3.5 Results 121(13)
3.5.1 Surface Analyses and 122(7)
Cross-sectional Images
3.5.2 Mechanical Tests 129(4)
3.5.3 Accelerated Aging 133(1)
3.6 Summary 134(1)
References 135(4)
4 Laser Surface Modification of Fibers for 139(28)
Improving Fiber/Resin Interfacial
Interactions in Composites
Anil N. Netravali
4.1 Introduction 140(3)
4.2 Excimer Laser Treatment of UHMWPE 143(11)
Fibers
4.3 Excimer Laser Treatment of Vectranョ 154(5)
Fibers
4.4 Excimer Laser Treatment of Aramid 159(1)
Fibers
4.5 Excimer Laser Treatment of Cellulose 160(1)
Fibers
4.6 Summary 161(1)
References 162(5)
5 Laser Surface Modification in Dentistry: 167(38)
Effect on the Adhesion of Restorative
Materials
Regina Guenka Palma-Dibb
Juliana Jendiroba Faraoni-Romano
Walter Raucci-Neto
5.1 Introduction 167(6)
5.2 Dental Structures 173(7)
5.3 Adhesion of Restorative Materials 180(6)
5.4 Laser Light Interaction with the 186(4)
Dental Substrate
5.5 Dental Structure Ablation and 190(6)
Influence on Bond Strength of Restorative
Materials
5.6 Summary and Prospects 196(1)
References 196(9)
Part 2: Other Effects/Applications of Laser
Surface Treatment
6 Fundamentals of Laser-Polymer Interactions 205(58)
and their Relevance to Polymer Metallization
Piotr Rytlewski
6.1 Introduction 205(3)
6.2 Impact of Laser Radiation on a 208(7)
Polymeric Material
6.3 Laser Selection Criteria 215(5)
6.4 Surface Modification of Polymeric 220(13)
Materials Below Ablation Threshold
6.5 Surface Modification of Polymeric 233(8)
Materials Above Ablation Threshold
6.6 Application of Lasers to Polymer 241(10)
Metallization
6.6.1 Metallization of Polymers 241(2)
6.6.2 Neat Polymers in Gaseous Medium 243(3)
6.6.3 Neat Polymers in Liquid Medium 246(1)
6.6.4 Neat Polymers Coated with Films 247(1)
6.6.5 Polymer Composites Containing 248(3)
Active Species
6.7 Summary 251(1)
Acknowledgement 252(1)
References 252(11)
7 Laser Patterning of Silanized 263(26)
Carbon/Polymer Bipolar Plates with Tailored
Wettability for Fuel Cell Applications
Martin Schade, Steffen Franzka
Anja Schroter
Franco Cappuccio
Volker Peinecke
Angelika Heinzel
Nils Hartmann
7.1 Introduction 264(5)
7.1.1 Water Management in Fuel Cells 264(2)
7.1.2 Wettability of Materials 266(3)
7.2 Silane-based Coatings 269(2)
7.3 Laser Processing of Silane-based 271(1)
Coatings
7.4 Fabrication and Plasma Activation of 272(4)
Bipolar Plates
7.5 Silanization of Bipolar Plates 276(2)
7.6 Laser Processing of Bipolar Plates 278(4)
7.7 Summary 282(1)
7.8 Prospects 283(1)
Acknowledgments 283(1)
References 284(5)
8 Predominant and Generic Parameters 289(48)
Governing the Wettability Characteristics of
Selected Laser-modified Engineering Materials
Jonathan Lawrence
David Waugh
Hao Liang
8.1 Introduction 290(1)
8.2 Modification of Wettability 291(5)
Characteristics Using Laser Beams
8.2.1 Laser Surface Modification of 291(1)
Ceramic Materials for Improved
Wettability
8.2.2 Laser Surface Modification of 292(2)
Metallic Materials for Improved
Wettability
8.2.3 Laser Surface Modification of 294(2)
Polymers for Improved Wettability
8.3 Laser Wettability Characteristics 296(11)
Modification of Selected Ceramics
8.3.1 Experimental Procedures 296(1)
8.3.1.1 Material Specifications 296(1)
8.3.1.2 Laser Processing Details 296(1)
8.3.1.3 Morphological, Chemical and 297(1)
Phase Analysis Procedures
8.3.1.4 Wettability Characteristics 298(1)
Analysis Procedure
8.3.2 Identification of the Predominant 299(1)
Mechanisms Active in Determining
Laser-modified Wettability
Characteristics
8.3.2.1 For the Magnesia Partially 299(1)
Stabilized Zirconia (MgO-PSZ)
8.3.2.2 For the Yttria partially 303(2)
Stabilized Zzirconia (YPSZ)
8.3.3 Ascertaining the Generic Effects 305(2)
of Laser Surface Treatment on the
Wettability Characteristics of the
Selected Ceramics
8.4 Laser Wettability Characteristics 307(9)
Modification of Selected Metals
8.4.1 Experimental Procedures 307(1)
8.4.1.1 Material Specifications 307(1)
8.4.1.2 Laser Processing Details 308(1)
8.4.1.3 Morphological, Chemical and 308(1)
Phase Analysis Procedures
8.4.1.4 Wettability Characteristics 309(1)
Analysis Procedure
8.4.2 Identification of the Predominant 309(1)
Mechanisms Active in Determining
Laser-modified Wettability
Characteristics
8.4.2.1 For the Ti6Al4V Alloy 309(1)
8.4.2.2 For the 316 LS Stainless Steel 312(2)
8.4.3 Ascertaining the Generic Effects 314(2)
of Laser Surface Treatment on the
Wettability Characteristics of the
Selected Metals
8.5 Laser Wettability Characteristics 316(13)
Modification of a Selected Polymer
8.5.1 Experimental Procedures 316(1)
8.5.1.1 Material Specifications 316(1)
8.5.1.2 Laser-induced Patterning 316(1)
Procedure
8.5.1.3 Laser whole-area Irradiative 319(1)
Processing Procedure
8.5.1.4 Topography, Wettability 319(1)
Characteristics and Surface Chemistry
Analysis Techniques
8.5.2 Identification of the Predominant 320(1)
Mechanisms Active in Determining
Laser-modified Wettability
Characteristics
8.5.2.1 Laser-induced Patterning 320(1)
8.5.2.2 Laser Whole-area Irradiative 323(1)
Processing
8.5.2.3 Comparison Between 325(2)
Laser-induced Patterning and Laser
Whole-area Irradiative Processing
8.5.3 Ascertaining the Generic Effects 327(2)
of Laser Surface Treatment on the
Wettability Characteristics of the
Polymer
8.6 Summary and Conclusions 329(2)
References 331(6)
9 Laser Surface Engineering of Polymeric 337(40)
Materials and the Effects on Wettability
Characteristics
D.G. Waugh
D. Avdic
K.J. Woodham
I. Lawrence
9.1 Introduction 337(1)
9.2 Wettability Characteristics 338(7)
9.2.1 Contact Angle 338(1)
9.2.1.1 Contact Angle Hysteresis 339(1)
9.2.1.2 The Effect of Surface Roughness 340(1)
on the Contact Angle
9.2.1.3 The Effects of Surface 340(2)
Chemistry on the Contact Angle
9.2.2 Surface Energy Parameters 342(1)
9.2.3 Wettability in Relation to 343(1)
Adhesion
9.2.3.1 Adhesional Wetting 343(1)
9.2.3.2 Immersional Wetting 344(1)
9.2.3.3 Spreading Wetting 345(1)
9.3 State-of -the-Art Surface Engineering 345(21)
Techniques
9.3.1 Alternatives to Laser Surface 345(1)
Engineering
9.3.1.1 Radiation Grafting 345(1)
9.3.1.2 Plasma Surface Modification 346(1)
9.3.1.3 Ion Beam Processing 346(1)
9.3.1.4 Micro-printing 347(1)
9.3.2 Photolithography 348(3)
9.3.3 Using Lasers for Surface 351(1)
Engineering
9.3.3.1 Laser Surface Engineering 351(4)
9.3.4 A Technique for Laser Surface 355(1)
Engineering of Polymeric Materials
9.3.4.1 The Polymeric Material 355(1)
9.3.4.2 The Laser Surface Treatments 355(3)
9.3.5 Employing Laser Surface 358(1)
Engineering of Polymeric Materials to
Modulate Wettability Characteristics
9.3.5.1 CO2 and KrF Excimer 358(1)
Laser-Patterning
9.3.5.2 CO2 and KrF Excimer Laser Whole 359(1)
Area Irradiative Processing
9.3.5.3 Comparisons Between 360(1)
Laser-Patterning and Laser Whole Area
Irradiative Processing
9.3.5.4 Predicting Mixed-State Wetting 363(3)
Regimes for Laser Surface Engineered
Polymeric Materials
9.4 Summary 366(1)
References 367(10)
10 Water Adhesion to Laser-Treated Surfaces 377(38)
Athanasios Milionis
Despina Fragouli
Ilker S. Bayer
Athanassia Athanassiou
10.1 Introduction 377(4)
10.2 Materials, Fabrication Approaches 381(14)
and Results
10.2.1 Organic Materials and 381(1)
Nanocomposites
10.2.1.1 Crystalline Polymers 381(1)
10.2.1.2 Thermosetting Polymers 383(1)
10.2.1.3 Thermoplastic Polymers 386(1)
10.2.1.4 Nanocomposites 387(2)
10.2.2 Inorganic Materials 389(1)
10.2.2.1 Silicon 389(1)
10.2.2.2 Metals and Alloys 392(1)
10.2.2.3 Glass 393(2)
10.3 Applications 395(9)
10.3.1 Manipulation of Water Droplets 395(3)
10.3.2 Anisotropic Wetting 398(1)
10.3.3 Dust Removal 399(1)
10.3.4 Electrowetting 400(3)
10.3.5 Reduced Ice Friction 403(1)
10.3.6 MEMS 403(1)
10.3.7 Microfluidics 404(1)
10.4 Prospects 404(2)
10.5 Summary 406(1)
Acknowledgement 406(1)
References 407(8)
Index 415