新书报道
当前位置: 首页 >> 生物医学农业环境科学 >> 正文
Terrestrial Biosphere-atmosphere Fluxes
发布日期:2015-12-08  浏览

Terrestrial Biosphere-atmosphere Fluxes

[Book Description]

Fluxes of trace gases, water and energy - the 'breathing of the biosphere' - are controlled by a large number of interacting physical, chemical, biological and ecological processes. In this interdisciplinary book, the authors provide the tools to understand and quantitatively analyse fluxes of energy, organic compounds such as terpenes, and trace gases including carbon dioxide, water vapour and methane. It first introduces the fundamental principles affecting the supply and demand for trace gas exchange at the leaf and soil scales: thermodynamics, diffusion, turbulence and physiology. It then builds on these principles to model the exchange of water, carbon dioxide, terpenes and stable isotopes at the ecosystem scale. Detailed mathematical derivations of commonly used relations in biosphere-atmosphere interactions are provided for reference in appendices. An accessible introduction for graduate students and a key resource for researchers in related fields, such as atmospheric science, hydrology, meteorology, climate science, biogeochemistry and ecosystem ecology.

[Table of Contents]
 
Preface                                            xi
List of symbols                                    xiv
1 The general nature of biosphere-atmosphere       1  (14)
fluxes
  1.1 Biosphere-atmosphere exchange as a           2  (1)
  biogeochemical process
  1.2 Flux - a unifying concept in                 3  (2)
  biosphere-atmosphere interactions
  1.3 Non-linear tendencies in                     5  (5)
  biosphere-atmosphere exchange
  1.4 Modeling - a tool for prognosis and          10 (2)
  diagnosis in ecosystem-atmosphere interactions
  1.5 A hierarchy of processes in                  12 (3)
  surface-atmosphere exchange
2 Thermodynamics, work, and energy                 15 (23)
  2.1 Thermodynamic systems and fluxes as          16 (1)
  thermodynamic processes
  2.2 Energy and work                              17 (3)
  2.3 Free energy and chemical potential           20 (3)
  2.4 Heat and temperature                         23 (3)
  2.5 Pressure, volume, and the ideal gas law      26 (2)
  2.6 Adiabatic and diabatic processes             28 (1)
  2.7 The Navier-Stokes equations                  29 (2)
  2.8 Electromagnetic radiation                    31 (3)
  2.9 Beer's Law and photon transfer through a     34 (4)
  medium
3 Chemical reactions, enzyme catalysts, and        38 (26)
stable isotopes
  3.1 Reaction kinetics, equilibrium, and          39 (2)
  steady state
  3.2 The energetics of chemical reactions         41 (5)
  3.3 Reduction-oxidation coupling                 46 (4)
  3.4 Enzyme catalysis                             50 (5)
  3.5 Stable isotopes and isotope effects          55 (5)
  Appendix 3.1 Formal derivations of the           60 (2)
  Arrhenius equation and the Q10 model
  Appendix 3.2 Derivation of the                   62 (2)
  Michaelis-Menten model of enzyme kinetics
4 Control over metabolic fluxes                    64 (25)
  4.1 The principle of shared metabolic control    65 (3)
  4.2 Control over photosynthetic metabolism       68 (12)
  4.3 Photorespiratory metabolism                  80 (2)
  4.4 Tricarboxylic acid cycle respiration         82 (3)
  ("dark respiration") in plants
  4.5 C4 photosynthesis                            85 (4)
5 Modeling the metabolic CO2 flux                  89 (22)
  5.1 Modeling the gross rate of CO2               90 (6)
  assimilation and photorespiration
  5.2 Modeling dark respiration (Rd)               96 (4)
  5.3 Net versus gross CO2 assimilation rate       100(9)
  5.4 The scaled connections among                 109(2)
  photosynthetic processes
6 Diffusion and continuity                         111(25)
  6.1 Molecular diffusion                          112(9)
  6.2 Diffusion through pores and in               121(10)
  multi-constituent gas mixtures
  6.3 Flux divergence, continuity, and mass        131(2)
  balance
  Appendix 6.1 A thermodynamic derivation of       133(3)
  Fick's First Law
7 Boundary layer and stomata) control over leaf    136(37)
fluxes
  7.1 Diffusive driving forces and resistances     137(1)
  in leaves
  7.2 Fluid-surface interactions and boundary      138(6)
  layer resistance
  7.3 Stomatal resistance and conductance          144(22)
  7.4 The leaf internal resistance and             166(2)
  conductance to CO2 flux
  7.5 Evolutionary constraint on leaf diffusive    168(1)
  potential
  Appendix 7.1 A thermodynamic derivation of       169(1)
  diffusive conductances
  Appendix 7.2 Derivation of the ternary           169(2)
  stomatal conductance to CO2, H2O, and dry air
  Appendix 7.3 Derivation of the Leuning and       171(2)
  Monteith forms of the Ball-Woodrow-Berry model
8 Leaf structure and function                      173(30)
  8.1 Leaf structure                               174(3)
  8.2 Convergent evolution as a source of          177(4)
  common patterns in leaf structure and function
  8.3 Photon transport in leaves                   181(8)
  8.4 CO2 transport in leaves                      189(2)
  8.5 Water transport in leaves                    191(2)
  8.6 The error caused by averaging                193(5)
  non-linearities in the flux relations of
  leaves
  8.7 Models with explicit descriptions of leaf    198(2)
  gradients
  Appendix 8.1 Derivation of the Terashima et      200(3)
  al. (2001) model describing leaf structure
  and its relation to net CO2 assimilation rate
9 Water transport within the                       203(19)
soil-plant-atmosphere continuum
  9.1 Water transport through soil                 204(5)
  9.2 Water flow through roots                     209(2)
  9.3 Water transport through stems                211(6)
  9.4 The hydraulic conductance of leaves and      217(1)
  aquaporins
  9.5 Modeling the hydraulic conductance and       218(2)
  associated effects of embolism
  9.6 Hydraulic redistribution                     220(2)
10 Leaf and canopy energy budgets                  222(22)
  10.1 Net radiation                               223(4)
  10.2 Sensible heat exchange between leaves       227(2)
  and their environment
  10.3 Latent heat exchange, atmospheric           229(3)
  humidity, and temperature
  10.4 Surface latent heat exchange and the        232(5)
  combination equation
  Appendix 10.1 Derivation of the                  237(2)
  Clausius-Clapeyron relation
  Appendix 10.2 A thermodynamic approach to        239(3)
  derivation of the Penman-Monteith equation
  Appendix 10.3 Derivation of the isothermal       242(2)
  form of the Penman-Monteith equation
11 Canopy structure and radiative transfer         244(36)
  11.1 The structure of canopies                   245(5)
  11.2 The solar radiation regime of canopies      250(23)
  11.3 Remote sensing of vegetation structure      273(2)
  and function
  Appendix 11.1 Reconciling the concepts of        275(3)
  statistical probability and canopy photon
  interception
  Appendix 11.2 The theoretical linkage between    278(2)
  the probability of photon flux penetration
  (P0) and the probability of a sunfleck (Psf)
  at a specific canopy layer
12 Vertical structure and mixing of the            280(16)
atmosphere
  12.1 Structure of the atmosphere                 281(6)
  12.2 Atmospheric buoyancy, potential             287(3)
  temperature, and the equation of state
  12.3 Atmospheric stability                       290(4)
  Appendix 12.1 Derivation of potential            294(2)
  temperature and conversion from volume to
  pressure in the conservation of energy
  equation
13 Wind and turbulence                             296(31)
  13.1 The general nature of wind                  297(1)
  13.2 Turbulent wind eddies                       298(3)
  13.3 Shear, momentum flux, and the wind          301(6)
  profile near the surface
  13.4 Turbulence kinetic energy (TICE)            307(3)
  13.5 Turbulence spectra and spectral analysis    310(4)
  13.6 Dimensionless relationships: the            314(1)
  Reynolds number and drag coefficient
  13.7 The aerodynamic canopy resistance           315(1)
  13.8 Eulerian and Lagrangian perspectives of     316(3)
  turbulent motions
  13.9 Waves, nocturnal jets, and katabatic        319(4)
  flows
  Appendix 13.1 Rules of averaging with            323(1)
  extended reference to Reynolds averaging
  Appendix 13.2 Derivation of the Reynolds         324(1)
  shear stress
  Appendix 13.3 Derivation of the logarithmic      325(2)
  wind profile
14 Observations of turbulent fluxes                327(25)
  14.1 Turbulent fluxes in the atmospheric         328(2)
  surface layer
  14.2 The effect of a plant canopy on             330(7)
  atmospheric turbulence
  14.3 Turbulent fluxes above canopies             337(6)
  14.4 Mesoscale fluxes                            343(4)
  Appendix 14.1 Derivation of Monin-Obukhov        347(2)
  similarity relationships
  Appendix 14.2 Derivation of the conservation     349(3)
  equation for canopy flux
15 Modeling of fluxes at the canopy and            352(21)
landscape scales
  15.1 Modeling canopy fluxes                      353(9)
  15.2 Mass balance, dynamic box models, and       362(3)
  surface fluxes
  15.3 Eulerian perspectives in canopy flux        365(3)
  models
  15.4 Lagrangian perspectives in canopy flux      368(3)
  models
  Appendix 15.1 Derivation of the model for        371(2)
  planetary boundary layer (PBL) scalar budgets
  in the face of entrainment
16 Soil fluxes of CO2, CH4, and NOX                373(22)
  16.1 The decomposition of soil organic matter    373(6)
  16.2 Control by substrate over soil              379(2)
  respiration rate
  16.3 Control by climate over soil respiration    381(3)
  rate
  16.4 Coupling of soil respiration to net         384(2)
  primary production and implications for
  carbon cycling in the face of global change
  16.5 Methane emissions from soils                386(4)
  16.6 The fluxes of nitrogen oxides from soils    390(2)
  Appendix 16.1 Derivation of first-order          392(3)
  litter decomposition kinetics
17 Fluxes of biogenic volatile compounds           395(20)
between plants and the atmosphere
  17.1 The chemical diversity of biogenic          396(3)
  volatile organic compounds (BVOCs)
  17.2 The biochemical production of BVOCs         399(4)
  17.3 Emission of metabolic NH3 and NO2 from      403(1)
  plants
  17.4 Stomatal control over the emission of       404(2)
  BVOCs from leaves
  17.5 The fate of emitted BVOCs in the            406(2)
  atmosphere
  17.6 Formation of organic secondary aerosol      408(4)
  particles in the atmosphere
  Appendix 17.1 Reactions leading to the           412(3)
  oxidation of BVOCs to form tropospheric O3
18 Stable isotope variants as tracers for          415(19)
studying biosphere-atmosphere exchange
  18.1 Stable isotope discrimination by Rubisco    416(2)
  and at other points in plant carbon metabolism
  18.2 Fractionation of stable isotopes in         418(2)
  leaves during photosynthesis
  18.3 Fractionation of the isotopic forms of      420(1)
  H2O during leaf transpiration
  18.4 Isotopic exchange of 18O and 16O between    421(2)
  CO2 and H2O in leaves
  18.5 Assessing the isotopic signature of         423(1)
  ecosystem respired CO2 - the "Keeling plot"
  18.6 The influence of ecosystem CO2 exchange     424(5)
  on the isotopic composition of atmospheric CO2
  Appendix 18.1 Derivation of the Farquhar et      429(3)
  al. (1982) model and augmentations for leaf
  carbon isotope discrimination
  Appendix 18.2 Derivation of the leaf form of     432(2)
  the Craig-Gordon model
References                                         434(39)
Index                                              473

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上