Poly(Lactic Acid) Science and Technology : Processing, Properties, Additives and Applications
[BOOK DESCRIPTION]
Biodegradable polymers from renewable resources are sought after for many purposes, from packaging materials in food to biomedical applications. Poly (lactic acid) (PLA) is a well-known biopolymer derived from corn starch or sugar cane used in different food packaging and artificial bones and scaffolds. Poly(lactic acid) Science and Technology first introduces the basic concepts of PLA and then covers PLA synthesis and polymerization, processing, characterization and physical properties of PLA, PLA-based nano-biocomposites, the main applications in active packaging and as biomaterials for tissue engineering, degradation and biodegradation of PLA and finally industrial and legislative issues. This interdisciplinary approach provides readers with a general overview of all relevant aspects related to PLA including fundamental issues, innovative applications, new types of processing and emerging applications, modification of PLA, life cycle assessment, bio-additives, bio/degradation and sustainability and international regulations. Experts provide a complete resource and whole perspective on PLA covering scientific, ecological, social and economic issues.The book will appeal to chemists, food technologists and materials engineers as well as researchers interested in bio-based and biodegradable polymers and composites.
[TABLE OF CONTENTS]
PLA Synthesis and Polymerization
Chapter 1 PLA Synthesis. From the Monomer to 3 (34)
the Polymer
Kazunari Masutani
Yoshiharu Kimura
1.1 Introduction 3 (1)
1.2 Synthesis of Lactic Acids 4 (3)
1.2.1 Stereoisomers of Lactic Acid 4 (1)
1.2.2 Fermentation with Lactic Acid 5 (1)
Bacteria
1.2.3 Isolation and Purification of 5 (2)
Lactic Acids
1.2.4 Chemical Synthesis of Lactic Acids 7 (1)
1.3 Synthesis of Lactide Monomers 7 (1)
1.3.1 Stereoisomers of Lactides 7 (1)
1.3.2 Synthesis and Purification of 7 (1)
Lactides
1.4 Polymerization of Lactide Monomers 8 (17)
1.4.1 Structural Diversities of the 8 (1)
Polylactides
1.4.2 Thermodynamics for the 9 (2)
Polymerization of n- and L-Lactides
1.4.3 Metal Catalysts 11 (4)
1.4.4 Cationic Catalysts 15 (1)
1.4.5 Organic Catalysts 15 (3)
1.4.6 Stereo-controlled Polymerization 18 (3)
1.4.7 Stereo-block Copolymerization 21 (1)
1.4.8 Copolymerization 22 (3)
1.5 Polycondensation of Lactic Acids 25 (6)
1.5.1 Solution Polycondensation 27 (1)
1.5.2 Melt/Solid Polycondensation 27 (2)
1.5.3 Stereo-block Polycondensation 29 (2)
References 31 (6)
Chapter 2 Polylactide Stereo-complex: From 37 (29)
Principles to Applications
Suming Li
Yanfei Hu
2.1 Introduction 37 (1)
2.2 Synthesis and Structure-Properties of 38 (9)
PLA Stereo-complex
2.2.1 Synthesis of PLA Homopolymers and 38 (1)
Stereo-copolymers
2.2.2 PLA Stereo-complex by 39 (1)
Co-crystallization
2.2.3 Properties of PLA Stereo-complex 40 (4)
2.2.4 Degradation of PLA Stereo-complex 44 (3)
2.3 Biomedical Applications of PLA 47 (14)
Stereo-complex
2.3.1 PLA Stereo-complex Nanofibre 48 (1)
Scaffolds
2.3.2 PLA Stereo-complex Microparticles 49 (1)
2.3.3 PLA Stereo-complex Micelles 50 (6)
2.3.4 Stereo-complex Hydrogels 56 (5)
2.3.5 Other Stereo-complex Systems 61 (1)
References 61 (5)
Chapter 3 Crystallization of PLA-based 66 (35)
Materials
A.J. M?ller
M. チvila
G. Saenz
J. Salazar
3.1 Introduction 66 (1)
3.2 Crystal Structure and Single Crystals 67 (1)
3.3 Melting and Glass Transition 68 (5)
Temperatures
3.4 Superstructural Morphology 73 (1)
3.5 Crystallization Kinetics 74 (10)
3.5.1 Spherulite Growth Kinetics 74 (2)
3.5.2 Application of the Lauritzen and 76 (4)
Hoffman Theory to PLLA
3.5.3 Overall Crystallization Kinetics 80 (4)
3.6 Block Copolymers Based on PLA 84 (8)
3.6.1 PLLA-PEO Copolymers 84 (3)
3.6.2 Copolymers versus Blends of PLLA 87 (2)
and PCL
3.6.3 PE-b-PLA Block Copolymers 89 (3)
3.7 Conclusions and Outlook 92 (1)
References 93 (8)
Processing, Characterization and Physical
Properties of PLA
Chapter 4 Reactive Extrusion of PLA-based 101(23)
Materials: from Synthesis to Reactive
Melt-blending
Jean-Marie Raquez
Rindra Ramy-Ratiarison
Marius Murariu
Philippe Dubois
4.1 Introduction 101(1)
4.2 Polylactide (PLA)-based Materials: 102(3)
General Aspects and Reactive Extrusion
(REX) Processing
4.3 REX Synthesis of PLA-based Materials 105(2)
via Ring-opening Polymerization
4.4 REX Coupling Reactions from PLA 107(6)
Precursors
4.4.1 REX Isocyanate-based Coupling 108(2)
Reactions
4.4.2 REX Epoxy-based Coupling Reactions 110(3)
4.5 REX Free-radical Grafting Reactions 113(4)
of PLA Chains
4.6 REX Transesterification (Exchange) 117(1)
Reactions
4.7 Conclusions 118(1)
Acknowledgements 119(1)
References 119(5)
Chapter 5 Plasticization of Poly(lactide) 124(47)
Alexandre Ruellan
Violette Ducruet
Sandra Domenek
5.1 Introduction 124(1)
5.2 Principles of Plasticizing 125(4)
5.3 Plasticizer Permanence, Migration and 129(5)
Interaction with Contact Media
5.4 PLA Plasticizers: Properties, Effects 134(21)
and Processability
5.4.1 Plasticizer Impact on Mechanical 134(19)
Properties
5.4.2 Plasticizers as Processing Aids 153(2)
5.5 Long-term Stability of Plasticized PLA 155(5)
5.5.1 Physicochemical Studies of 155(4)
Long-term Stability
5.5.2 Chemical Stability and Degradation 159(1)
5.6 PLA Plasticizers Derived from Biomass 160(3)
5.7 Conclusion 163(1)
Symbols and Abbreviations 164(1)
Monomeric Plasticizers 164(1)
Oligomeric Plasticizers 165(1)
References 165(6)
Chapter 6 Electrospinning of PLA 171(24)
Laura Peponi
Alicia Mojica-Garcia
Jos? M. Kenny
6.1 Production of PLA fibres by 171(8)
Electrospinning
6.1.1 PLA Electrospun Nanofibres: 175(2)
Diameter, Morphology and Orientation
6.1.2 PLA Electrospun Nanofibres: 177(1)
Crystallinity
6.1.3 PLA Electrospun Nanofibres: 177(2)
Mechanical Properties
6.2 PLA Matrix Nanocomposite Electrospun 179(4)
Fibres
6.2.1 PLA Electrospun Nanocomposite 180(1)
Fibres with Montmorillonites
6.2.2 PLA Electrospun Nanocomposite 180(1)
Fibres with Halloysite Nanotubes
6.2.3 PLA Electrospun Nanocomposite 181(1)
Fibres with Hydroxyapatite
6.2.4 PLA Electrospun Nanocomposite 182(1)
Fibres with Carbon Nanotubes
6.2.5 PLA Electrospun Nanocomposite 183(1)
Fibres with Graphene
6.3 Applications of Electrospun-PLA Fibres 183(8)
6.3.1 Tissue Engineering 184(3)
6.3.2 Wound Dressing 187(1)
6.3.3 Drug Delivery 188(3)
6.4 Conclusions 191(1)
References 191(4)
Chapter 7 Modification of PLA by Blending 195(20)
with Elastomers
N. Bitinis
R. Verdejo
M.A. Lopez-Manchado
7.1 Copolymerization 195(1)
7.2 Blending with other Polymers 196(12)
7.2.1 Blending with Biodegradable 196(1)
Polymers
7.2.2 Blending with Non-biodegradable 197(1)
Petroleum-based Polymers
7.2.3 Blending with Elastomers 198(5)
7.2.4 Blending with Natural Rubber 203(5)
7.3 Conclusions 208(1)
References 209(6)
PLA-based Nano-biocomposites
Chapter 8 Polylactide (PLA)/Clay 215(10)
Nano-biocomposites
Jose M. Lagar?n
Luis Cabedo
8.1 Introduction 215(1)
8.2 Nanoclays for PLA Nanocomposites 216(6)
8.2.1 PLA/Clay Nanocomposite Processing 219(1)
8.2.2 PLA/Clay Nanocomposites Properties 220(2)
References 222(3)
Chapter 9 PLA-nanocellulose Biocomposites 225(20)
Qi Zhou
Lars A. Berglund
9.1 Introduction 225(1)
9.2 Types of Nanocellulose 226(2)
9.3 Surface Modification of Nanocellulose 228(2)
9.4 Processing/Mixing Strategies 230(2)
9.5 Properties 232(7)
9.5.1 Crystallization 232(1)
9.5.2 Thermal and Mechanical Properties 233(5)
9.5.3 Barrier Properties 238(1)
9.6 Concluding Remarks 239(1)
References 239(6)
PLA Main Applications
Chapter 10 PLA and Active Packaging 245(21)
Ram?n Catal?
Gracia Lopez-Carballo
Pilar Herndez-Mu?oz
Rafael Gavara
10.1 Introduction to Active Packaging 245(4)
10.2 Antimicrobial Active Packaging 249(8)
10.2.1 Antimicrobial Agents 250(1)
10.2.2 Incorporation of the Agent into 251(1)
the Polymer Matrix
10.2.3 Antimicrobial PLA-based 251(6)
Packaging Developments
10.3 Antioxidant Active Packaging 257(5)
10.3.1 Antioxidant Agents 258(1)
10.3.2 Incorporation of the Agent into 258(4)
the Polymer Matrix
10.3.3 Other Packaging Applications 262(1)
Acknowledgements 262(1)
References 262(4)
Chapter 11 Biomaterials for Tissue 266(23)
Engineering Based on Nano-structured
Poly(Lactic Acid)
Ilaria Armentano
Elena Fortunati
Samantha Mattioli
Nicoletta Rescignano
Jos Maria Kenny
11.1 Tissue Engineering 266(1)
11.2 Stem Cells 267(2)
11.2.1 Embryonic Stem Cells 268(1)
11.2.2 Adult Stem Cell Sources 268(1)
11.2.3 Induced Pluripotent Stem Cells 268(1)
11.2.4 Differentiation Induction 269(1)
Factors in Tissue Engineering
11.3 Biomaterials and Nanotechnology 269(1)
11.4 Nanostructured PLA 270(9)
11.4.1 Blends 271(3)
11.4.2 Nanoparticles and Nanoshells 274(2)
11.4.3 Nanocomposites 276(1)
11.4.4 Surface Modification 277(2)
11.5 Conclusions 279(1)
Acknowledgements 279(1)
References 279(10)
Degradation and Biodegradation of PLA
Chapter 12 Abiotic-hydrolytic Degradation of 289(28)
Poly(lactic acid)
Kikku Fukushima
Giovanni Camino
12.1 Introduction 289(1)
12.2 Molecular Hydrolytic Degradation 290(2)
Mechanisms of PLA
12.3 Factors Controlling Hydrolytic 292(13)
Degradation of PLA
12.3.1 Degradation Medium Conditions 292(3)
12.3.2 Structure and Properties of 295(10)
PLA-based Materials
12.4 Possible Benefits of Hydrolytic 305(3)
Degradation of PLA
12.4.1 Modifications in the Surface 306(1)
Hydrophilicity Level
12.4.2 Structural Modification 306(2)
12.5 Conclusions 308(1)
References 309(8)
Industrial and Legislative Issues
Chapter 13 Industrial Uses of PLA 317(17)
Stefano Fiori
13.1 Introduction 317(1)
13.2 PLA Mechanical and Thermal Properties 318(1)
13.3 Stereochemistry 319(1)
13.4 Use of Additives 320(2)
13.4.1 Plasticizers 321(1)
13.5 PLA Processing 322(4)
13.5.1 Extrusion 322(1)
13.5.2 Film and Sheet Casting 322(1)
13.5.3 Stretch Blow Moulding 323(1)
13.5.4 Blown Film Extrusion 323(1)
13.5.5 Thermoforming 324(1)
13.5.6 Spinning and Electrospinning 325(1)
13.5.7 Foaming 325(1)
13.6 PLA Commercial Applications 326(5)
13.6.1 Food Contact Materials 326(2)
13.6.2 Medical and Biomedical 328(1)
Applications
13.6.3 Agriculture 329(1)
13.6.4 Electrical Appliances 329(1)
13.6.5 Textiles 330(1)
13.6.6 Home Furnishing 331(1)
References 331(3)
Chapter 14 Legislation Related to PLA 334(13)
Mercedes A. Peltzer
Ana Beltr-Sanahuja
14.1 Food Packaging and Legislation 334(3)
14.2 Biodegradation and Compostability 337(2)
Legislation
14.3 Nanomaterials in Food Packaging 339(2)
Legislation
14.4 Life Cycle Assessment (LCA) 341(2)
14.5 Conclusions 343(1)
References 344(3)
Subject Index 347