新书报道
当前位置: 首页 >> 生物医学农业环境科学 >> 正文
Biothermodynamics : The Role of Thermodynamics in Biochemical Engineering
发布日期:2015-11-25  浏览

Biothermodynamics : The Role of Thermodynamics in Biochemical Engineering

[BOOK DESCRIPTION]

This book covers the fundamentals of the rapidly growing field of biothermodynamics, showing how thermodynamics can best be applied to applications and processes in biochemical engineering. It describes the rigorous application of thermodynamics in biochemical engineering to rationalize bioprocess development and obviate a substantial fraction of this need for tedious experimental work. As such, this book will appeal to a diverse group of readers, ranging from students and professors in biochemical engineering, to scientists and engineers, for whom it will be a valuable reference.


[TABLE OF CONTENTS]

Part I Fundamentals
  1 The Role Of Thermodynamics In Biochemical      3  (10)
  Engineering
    1.0 Basic remarks on thermodynamics in         3  (2)
    biochemical engineering
    1.1 Fundamental concepts in equilibrium        5  (1)
    thermodynamics
    1.2 Charged species, gels and other soft       5  (3)
    systems
    1.3 Stability and activity of                  8  (1)
    biomacromolecules
    1.4 Thermodynamics of live cells               9  (1)
    1.5 Thermodynamic analysis of metabolism       10 (1)
    1.6 Conclusions                                11 (1)
    1.7 References                                 12 (1)
  2 Phase Equilibrium In Non-Electrolyte Systems   13 (12)
    2.1 Introduction                               13 (1)
    2.2 Essential formal relations                 14 (5)
      2.2.1 Criteria for equilibrium               14 (5)
    2.3 Liquid-liquid equilibria                   19 (2)
    2.4 Solid-liquid equilibria                    21 (2)
    2.5 References                                 23 (2)
  3 Virial Expansion For Chemical Potentials In    25 (8)
  A Dilute Solution For Calculation Of
  Liquid-Liquid Equilibria
    3.1 Introduction                               25 (1)
    3.2 Example of protein separation              25 (6)
    3.3 References                                 31 (2)
  4 The Thermodynamics Of Electrically Charged     33 (30)
  Molecules In Solution
    4.1 Why do electrically charged molecules      33 (2)
    call for a particular thermodynamic
    treatment?
    4.2 The thermodynamics of electrolytes         35 (3)
      4.2.1 The electrochemical potential          35 (1)
      4.2.2 Equilibrium conditions                 36 (1)
      4.2.3 Appropriate concentration measures     37 (1)
      and non-ideality
    4.3 Electrostatics                             38 (10)
      4.3.1 Coulombs law, force of interactions    38 (1)
      4.3.2 Short and long range interactions      38 (2)
      4.3.3 Simplifications within the             40 (2)
      Debye-H?ckel theory
      4.3.4 Derivation of the simple               42 (6)
      Debye-H?ckel (DH) model
    4.4 Empirical and advanced ion activity        48 (8)
    coefficient models
      4.4.1 Empirical extension of Debye-H?ckel    48 (1)
      theory
      4.4.2 The Bjerrum theory of ion              49 (2)
      association
      4.4.3 Modern developments in electrolyte     51 (1)
      theory
      4.4.4 Pitzer's Model                         52 (1)
      4.4.5 Guggenheims numerical integration      53 (1)
      4.4.6 Integral theory of electrolyte         54 (2)
      solutions
    4.4 Equations of state for strong              56 (4)
    electrolyte thermodynamics
    4.5 References                                 60 (3)
  5 Water                                          63 (16)
    5.1 Introduction                               63 (1)
    5.2 Phenomenological aspects of water          64 (3)
    5.3 Molecular properties of water              67 (3)
    5.4 Water as a solvent                         70 (5)
      5.4.1 Electrolytes                           71 (1)
      5.4.2 Uncharged components                   72 (3)
    5.5 Further reading                            75 (4)
Part II Charged Species, Gels, And Other Soft
Systems
  6 Polymers, Polyelectrolytes And Gels            79 (44)
    6.1 Flory's Theory of polymer solutions        79 (7)
    6.2 Electric Charge on a weak                  86 (10)
    polyelectrolyte
    6.3 Hydrogels: Elementary Equations for        96 (19)
    Idealized Networks and Their Swelling
    Behavior
      6.3.1 Affine Network Model                   97 (1)
      6.3.2 Phantom Network Model                  98 (1)
      6.3.3 Swelling theory for hydrogels          98 (2)
      6.3.4 Illustration for a perfect             100(4)
      tetrafunctional network
      6.3.5 Effect of chain entanglement on        104(3)
      swelling
      6.3.6 Polyelectrolyte hydrogels              107(5)
      6.3.7 Hydrogel collapse: phase transition    112(3)
    6.4 Appendix: Entropy of mining for polymer    115(6)
    solutions
    6.5 References                                 121(2)
  7 Self-Assembly Of Amphiphilic Molecules         123(26)
    7.1 Introduction                               123(1)
    7.2 Self-assembly as phase separation          124(4)
    7.3 Different types of self-assembled          128(2)
    structures
    7.4 Aggregation as a "start-stop" process:     130(2)
    size and shape of self-assembled structures
    7.5 Mass action model for micellization        132(3)
    7.6 Factors that influence the critical        135(3)
    micelle concentration
    7.7 Bilayer structures                         138(3)
    7.8 Reverse micelles                           141(1)
    7.9 Microemulsions                             142(4)
    7.10 Self-assembled structures in              146(1)
    applications
    7.11 References                                147(2)
  8 Molecular Thermodynamics Of Partitioning In    149(32)
  Aqueous Two-Phase Systems
    8.1 Introduction                               149(3)
    8.2 Flory-Huggins theory applied to aqueous    152(2)
    two-phase partition systems
    8.3 Dependence of partitioning on system       154(11)
    variables
      8.3.1 Entropic contribution to the           156(2)
      partition coefficient
      8.3.2 Enthalpic contribution to the          158(2)
      partition coefficient
      8.3.3 Relative magnitudes of enthalpic       160(2)
      and entropic contributions to partitioning
      8.3.4 Effect of polymer molecular mass on    162(1)
      partitioning
      8.3.5 Effect of tie-line length on           163(2)
      partitioning
    8.4 Simple interpretation of the effects of    165(7)
    added electrolyte
      8.4.1 Ion partitioning in systems            166(2)
      containing a single salt
      8.4.2 Ion partitioning in systems            168(1)
      containing a single salt of a
      polyelectrolyte with monovalent counter
      ions
      8.4.3 Protein (biologic solute)              169(3)
      partitioning in systems containing a
      dominant salt
    8.5 Calculation of phase diagrams and          172(3)
    partitioning
    8.6 Conclusions                                175(3)
    8.7 References                                 178(3)
  9 Generalization Of Thermodynamic Properties     181(50)
  For Selection Of Bioseparation Processes
    9.1 Phase behavior in Bioseparation            181(15)
    Processes
      9.1.1 Phase behavior of 'Bio'-molecules      181(3)
      9.1.2 Intermolecular interactions and        184(1)
      molecular structure
      9.1.3 Physical interactions                  184(3)
      9.1.4 Chemical interactions                  187(1)
      9.1.5 Relative strength of molecular         188(1)
      interactions
      9.1.6 Effect of molecular structure          188(5)
      9.1.7 Pure 'bio'-molecules: crystalline      193(3)
      and amorphous solids
    9.2 Generalized correlation                    196(17)
      9.2.1 Basic model development                196(2)
      9.2.2 Solubilities in mixed solvents         198(4)
      9.2.3 Partitioning in mixed solvents and     202(8)
      aqueous two phase systems
      9.2.4 Sorption in mixed solvents             210(2)
      9.2.5 Selectivity of ion exchange resins     212(1)
    9.3 Generalized polarity scales                213(2)
    9.4 Conclusions                                215(1)
    9.A Appendix                                   215(13)
      9.A.1 An estimation of log P                 215(6)
      9.A.2 Pure components and mixtures           221(7)
    9.5 References                                 228(3)
  10 Protein Precipitation With Salts And/Or       231(14)
  Polymers
    10.1 Introduction                              231(3)
    10.2 Equation of state                         234(2)
    10.3 The potential of mean force               236(2)
    10.4 Precipitation calculations                238(1)
    10.5 Generalization to a multicomponent        239(2)
    solution
    10.6 Crystallization                           241(2)
    10.7 References                                243(2)
  11 Multicomponent Ion Exchange Equilibria Of     245(16)
  Weak Electrolyte Biomolecules
    11.1 Introduction                              245(2)
    11.2 Multi-component ion exchange of weak      247(3)
    electrolytes
      11.2.1 Thermodynamic framework               247(2)
      11.2.2 The DIX-model for monovalent ions     249(1)
    11.3 Experimental case studies                 250(6)
      11.3.1 Ion exchange of carboxylic and        251(2)
      acetyl amino acids
      11.3.2 Anion exchange of B-lactam            253(3)
      antibiotics
    11.4 Conclusions                               256(1)
    11.5 References                                257(4)
Part III Stability And Activity Of
Biomacromolecules
  12 Proteins                                      261(28)
    12.1 Introduction                              261(1)
    12.2 The amino acids in proteins               262(4)
    12.3 The three-dimensional structure of        266(5)
    protein molecules in aqueous solution
    12.4 Non-covalent interactions that            271(8)
    determine the structure of a protein
    molecule in water
      12.4.1 Hydrophobic interaction               272(1)
      12.4.2 Electrostatic interactions            273(3)
      12.4.3 Dipolar interactions                  276(1)
      12.4.4 Dispersion interactions               277(1)
      12.4.5 Hydrogen bonding                      277(2)
      12.4.6 Bond lengths and angles               279(1)
    12.5 Stability of protein structure in         279(2)
    aqueous solution
    12.6 Thermodynamic analysis of protein         281(6)
    structure stability
    12.7 Reversibility of protein denaturation     287(1)
    aggregation of unfolded protein molecules
    12.8 References                                288(1)
  13 Thermodynamics In Multiphase Biocatalysis     289(26)
    13.1 Why multiphase biocatalysis?              289(1)
    13.2 Thermodynamics of enzymatic reactions     290(6)
    in aqueous systems
    13.3 Non-aqueous media for biocatalysis        296(3)
      13.3.1 Fluid phase systems                   297(1)
      13.3.2 Solid-fluid systems                   298(1)
    13.4 Using enyzmes in organic solvents         299(4)
      13.4.1 Enzyme inactivation in organic        299(1)
      solvents
      13.4.2 Predicting solvent effects on         300(1)
      enzyme stability
      13.4.3 Water activity control                301(2)
    13.5 Phase equilibria in multiphase            303(7)
    enyzmatic reactions
      13.5.1 Partition coefficients                303(1)
      13.5.2 Aqueous solubilities                  304(1)
      13.5.3 Calculation of reaction yields at     305(3)
      equilibrium
      13.5.4 Suspension-to-suspension reactions    308(2)
    13.6 Whole cells in organic solvents           310(1)
    13.7 List of symbols                           311(2)
    13.8 References                                313(2)
  14 Thermodynamics Of The Physical Stability      315(40)
  Of Protein Solutions
    14.1 Introduction                              315(1)
    14.2 Factors influencing protein stability     316(13)
      14.2.1 Temperature                           316(1)
      14.2.2 pH effects on protein stability       317(1)
      14.2.3 Ligands and co-solutes                318(9)
      14.2.4 Salt type and concentration           327(1)
      14.2.5 Antimicrobial agents                  328(1)
      14.2.6 Surfactants                           328(1)
    14.3 Mechanism of protein aggregation          329(15)
      14.3.1 Structural transitions                329(1)
      accompanying aggregation
      14.3.2 Characterization of the               329(1)
      aggregation competent species
      14.3.3 Aggregation models, energetics,       330(2)
      and rates
      14.3.4 Role of conformational stability      332(6)
      14.3.5 Role of colloidal stability           338(6)
    14.4 Summary and conclusions                   344(1)
    14.5 References                                345(10)
  15 Measuring, Interpreting And Modeling The      355(44)
  Stabilities And Melting Temperatures Of
  B-Form DNAs That Exhibit A Two-State
  Helix-To-Coil Transition
    15.1 Introduction                              355(3)
    15.2 Methods for measuring duplex DNA          358(12)
    melting thermodynamics
      15.2.1 UV absorption spectroscopy            359(6)
      15.2.2 Calorimetry                           365(5)
    15.3 Modeling dsDNA stability and the          370(7)
    melting transition
      15.3.1 Statistical mechanical models of      370(2)
      the melting transition
      15.3.2 Linear nearest-neighbor               372(3)
      thermodynamic models of B-form DNA
      stability and melting
      15.3.3 Non-linear NNT models of B-form       375(2)
      DNA stability and melting
    15.4 Comparing and further improving the       377(10)
    performance of NNT models
      15.4.1 Duplexes terminating in a 5'-TA       381(1)
      group have statistically significant
      ΔTm errors
      15.4.2 Correcting Tm predictions for         382(2)
      duplexes containing 5'-TA type termini
      15.4.3 The dependence of B-DNA melting       384(1)
      temperatures on ionic strength
      15.4.4 Correcting Tm predictions for         385(2)
      common features and modifications of
      probes and primers
    15.5 Final thoughts                            387(2)
    15.6 References                                389(10)
Part IV Thermodynamics In Living Systems
  16 Live Cells As Open Non-Equilibrium Systems    399(24)
    16.1 Introduction                              399(1)
    16.2 Balances for open systems                 400(5)
      16.2.1 General remarks                       400(1)
      16.2.2 Molar balances                        401(1)
      16.2.3 Energy balances                       402(2)
      16.2.4 Entropy balance                       404(1)
      16.2.5 Gibbs energy balance                  404(1)
    16.3 Entropy production, forces and fluxes     405(3)
      16.3.1 Entropy production in closed          405(1)
      systems
      16.3.2 Entropy production in non-reactive    406(1)
      and reactive flow-systems
      16.3.3 Entropy production in steady-state    407(1)
      heat conduction
      16.3.4 Total entropy production              407(1)
    16.4 Flux-force relationships and coupled      408(1)
    processes
    16.5 The linear energy converter as a model    409(10)
    for living systems
      16.5.1 Reactions driven against their        409(3)
      driving force through coupling
      16.5.2 Efficiency of energy converters       412(3)
      16.5.3 Driving output reactions up-hill      415(1)
      and the principle of minimum entropy
      production
      16.5.4 Predicting growth kinetics from       416(1)
      irreversible thermodynamics
      16.5.5 Maintenance as static head            417(2)
      situation
    16.6 Conclusions                               419(2)
    16.7 References                                421(2)
  17 Miniaturization Of Calorimetry: Strengths     423(20)
  And Weaknesses For Bioprocess Monitoring And
  Control
    17.1 Why miniaturization of calorimeters?      423(2)
    17.2 Historical roots                          425(1)
    17.3 Measurement principle                     426(6)
      17.3.1 Assembly of chip-calorimeter          426(1)
      17.3.2 Miniaturization limits                427(3)
      17.3.3 Signal evaluation                     430(2)
    17.4 Calorimetry versus off-gas analysis       432(2)
    17.5 Applications of chip-calorimetry          434(4)
      17.5.1 Monitoring of discontinuous           434(1)
      bioprocesses
      17.5.2 Monitoring and control of             435(1)
      continuous bioprocesses
      17.5.3 Application for biofilm analysis      436(2)
    17.6 Outlook                                   438(1)
    17.7 References                                438(5)
  18 A Thermodynamic Approach To Predict Black     443(32)
  Box Model Parameters For Microbial Growth
    18.1 Introduction                              443(2)
    18.2 Catabolic energy production               445(8)
      18.2.1 Catabolic Gibbs energy under          445(2)
      standard conditions
      18.2.2 Catabolic Gibbs energy under          447(5)
      non-standard conditions
      18.2.3 Threshold inhibition                  452(1)
      concentrations of catabolic reactants
    18.3 Thermodynamic prediction of the           453(8)
    parameters in the Herbert-Pirt substrate
    distribution relation
      18.3.1 The substrate consumption rate for    453(1)
      organism maintenance, ms
      18.3.2 The biomass reaction substrate        454(4)
      parameter, a
      18.3.3 The anabolic product reaction         458(2)
      substrate parameter b
      18.3.4 Stoichiometry of the biomass,         460(1)
      product and catabolic reactions
    18.4 Prediction of the qp(オ) relationship      461(1)
    18.5 Prediction of the process reaction        462(3)
      18.5.1 Catabolic products                    462(2)
      18.5.2 Anabolic products                     464(1)
      18.5.3 Conclusion                            465(1)
    18.6 Prediction of the hyperbolic substrate    465(3)
    uptake kinetic parameters
      18.6.1 The parameters qsmax (or オmax)        465(2)
      18.6.2 Affinity, Ks                          467(1)
      18.6.3 Other mechanisms putting              467(1)
      thermodynamically based upper limits on
      qs and qp
    18.7 Influence of temperature and pH on        468(3)
    Black Box model parameters
      18.7.1 Effect of temperature                 468(1)
      18.7.2 Effect of pH                          469(2)
      18.7.3 Conclusion on temperature and pH-     471(1)
      related kinetic effects
    18.8 Heat production in biological systems     471(1)
    18.9 Conclusion                                472(1)
    18.10 References                               472(1)
    18.11 Further reading                          472(3)
  19 Biothermodynamics Of Live Cells: Energy       475(60)
  Dissipation And Heat Generation In Cellular
  Cultures
    19.1 Why study heat generation and energy      475(2)
    dissipation in biotechnology?
    19.2 The first law: measuring, interpreting    477(9)
    and exploiting heat generation in live
    cultures
      19.2.1 Applying heat balances to             477(2)
      bioreactors and calorimeters
      19.2.2 Calorimeters                          479(2)
      19.2.3 Typical heat generation rates         481(3)
      during microbial growth and their
      interpretation
      19.2.4 On-line monitoring and control of     484(2)
      bioprocesses by heat dissipation
      measurements
    19.3 The second law: energy dissipation,       486(6)
    driving force and growth
      19.3.1 Energy dissipation and the driving    486(3)
      force for growth in chemotrophes
      19.3.2 The relationship between the          489(2)
      driving force for growth and the biomass
      yield in chemotrophes
      19.3.3 Summary of the thermodynamics of      491(1)
      chemotrophic growth
    19.4 Predicting energy and heat dissipation    492(9)
    by calculation
      19.4.1 Problem statement                     492(1)
      19.4.2 Standard states                       493(1)
      19.4.3 Reference states                      493(5)
      19.4.4 Stoichiometry of the growth           498(3)
      reaction and split into catabolic and
      biosynthetic reactions
    19.5 Results: heat generation and Gibbs        501(11)
    energy dissipation as a function of biomass
    yield
      19.5.1 Aerobic growth                        501(1)
      19.5.2 Ethanol fermentation                  502(2)
      19.5.3 Lactic acid fermentation              504(1)
      19.5.4 Acetotrophic methanogenesis           505(1)
      19.5.5 Autotrophic methanogenesis            506(1)
      19.5.6 The relationship between heat         507(1)
      generation and free energy dissipation
      for chemotrophic growth
      19.5.6 Mixotrophic and phototrophic growth   508(4)
    19.6 Application: prediction of yield          512(7)
    coefficients
      19.6.1 Growth efficiency and irreversible    513(1)
      thermodynamics
      19.6.2 Gibbs energy correlations             514(3)
      19.6.3 Product and energy yields for         517(2)
      biofuels and biorefineries
    19.7 Discussion and conclusions                519(4)
    19.A Appendix: Example calculation for         523(8)
    prediction of growth stoichiometry
      19.A.1 Statement of the problem              523(1)
      19.A.2 Thermodynamic data                    524(1)
      19.A.3 Solution                              525(3)
      19.A.4 Discussion                            528(3)
    19.8 References                                531(4)
  20 Thermodynamic Analysis Of Photosynthesis      535(12)
    20.1 Introduction                              535(8)
    20.2 References                                543(4)
Part V Thermodynamics Of Metabolism
  21 A Thermodynamic Analysis Of Dicarboxylic      547(34)
  Acid Production In Microorganisms
    21.1 Introduction                              547(1)
    21.2 Outline of the approach                   548(8)
      21.2.1 Black Box thermodynamic analysis      548(1)
      of the theoretical dicarboxylic acid
      product reaction
      21.2.2 Maximal theoretical product yield     549(1)
      21.2.3 Stoichiometry of the theoretical      549(3)
      product reaction
      21.2.4 Alkali consumption, osmotic stress    552(3)
      and ionic strength
      21.2.5 Thermodynamics of product formation   555(1)
    21.3 Thermodynamics of dicarboxylic acid       556(13)
    transport
      21.3.1 Thermodynamically feasible            556(4)
      transport mechanisms
      21.3.2 Metabolic energy required for         560(1)
      dicarboxylic acid export
      21.3.3 Converting Gibbs energy of the        561(1)
      theoretical product reaction-into ATP for
      growth
      21.3.4 Fumaric acid                          561(4)
      21.3.5 Succinic acid                         565(1)
      21.3.6 Acid back diffusion                   566(3)
    21.4 Genetic engineering of target systems     569(1)
    based upon thermodynamic analysis results
    21.5 Conclusion                                569(2)
    21.A Appendices                                571(6)
      21.A.1 Acid/alkali cost                      571(1)
      21.A.2 Standard ΔfG values             571(1)
      21.A.3 In vivo energy aspects of ATP,        572(2)
      proton motive force, and fumarate
      reductase
      21.A.4 Effect of acid back-diffusion on      574(3)
      the product yield of dicarboxylic acid
    21.6 References                                577(4)
  22 Thermodynamic Analysis Of Metabolic           581(24)
  Pathways
    22.1 Introduction                              581(1)
    22.2 Thermodynamic feasibility analysis of     582(3)
    individual metabolic pathways
    22.3 Estimation of observable standard         585(9)
    Gibbs energies of reaction
      22.3.1 K vs. K'-accounting for the           587(1)
      non-ideality of the reaction medium
      22.3.2 K vs. K''-accounting for the pH       588(6)
      and pMg of the reaction medium
    22.4 Materials and methods [22]                594(2)
      22.4.1 Data for standard Gibbs energies      594(1)
      of reaction
      22.4.2 Data for physiological conditions     595(1)
      in the cytosol
      22.4.3 Computational software                596(1)
    22.5 Results and discussion                    596(4)
      23.5.1 Influence of the metabolite           596(4)
      concentration range
    22.6 Conclusions                               600(3)
    22.7 References                                603(2)
Index                                              605

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上