Modern Diffraction Methods
[BOOK DESCRIPTION]
The role of diffraction methods for the solid-state sciences has been pivotal to determining the (micro)structure of a material. Particularly, the expanding activities in materials science have led to the development of new methods for analysis by diffraction. This book offers an authoritative overview of the new developments in the field of analysis of matter by (in particular X-ray, electron and neutron) diffraction. It is composed of chapters written by leading experts on 'modern diffraction methods'. The focus in the various chapters of this book is on the current forefront of research on and applications for diffraction methods. This unique book provides descriptions of the 'state of the art' and, at the same time, identifies avenues for future research. The book assumes only a basic knowledge of solid-state physics and allows the application of the described methods by the readers of the book (either graduate students or mature scientists).
[TABLE OF CONTENTS]
Preface xv
About the Editors xxi
List of Contributors xxiii
Part I Structure Determination 1 (86)
1 Structure Determination of Single Crystals 3 (24)
Sander van Smaalen
1.1 Introduction 3 (2)
1.2 The Electron Density 5 (3)
1.3 Diffraction and the Phase Problem 8 (2)
1.4 Fourier Cycling and Difference 10 (1)
Fourier Maps
1.5 Statistical Properties of Diffracted 11 (4)
Intensities
1.6 The Patterson Function 15 (3)
1.7 Patterson Search Methods 18 (1)
1.8 Direct Methods 19 (2)
1.9 Charge Flipping and Low-Density 21 (3)
Elimination
1.10 Outlook and Summary 24 (3)
References 25 (2)
2 Modern Rietveld Refinement, a Practical 27 (34)
Guide
Robert Dinnebier
Melanie Muller
2.1 The Peak Intensity 29 (1)
2.2 The Peak Position 30 (1)
2.3 The Peak Profile 31 (7)
2.4 The Background 38 (1)
2.5 The Mathematical Procedure 39 (1)
2.6 Agreement Factors 39 (2)
2.7 Global Optimization Method of 41 (3)
Simulated Annealing
2.8 Rigid Bodies 44 (2)
2.9 Introduction of Penalty Functions 46 (1)
2.10 Parametric Rietveld Refinement 47 (14)
2.10.1 Parameterization of the Scale 49 (1)
Factor Depending on Time for Kinetic
Analysis
2.10.2 Parameterization of the Lattice 50 (3)
Parameters Depending on Pressure for
Determination of the Equations of State
2.10.3 Parameterization of Symmetry 53 (5)
Modes Depending on Temperature for
Determination of Order Parameters
References 58 (3)
3 Structure of Nanoparticles from Total 61 (26)
Scattering
Katharine L. Page
Thomas Proffen
Reinhard B. Neder
3.1 Introduction 61 (3)
3.2 Total Scattering Experiments 64 (5)
3.2.1 Using X-Rays 66 (1)
3.2.2 Using Neutrons 67 (2)
3.3 Structure Modeling and Refinement 69 (5)
3.3.1 Using a Particle Form Factor 69 (1)
3.3.2 Modeling Finite Nanoparticles 70 (4)
3.4 Examples 74 (8)
3.4.1 BaTiO3 74 (4)
3.4.2 CdSe/ZnS Core-Shell Particles 78 (4)
3.5 Outlook 82 (5)
References 83 (4)
Part II Analysis of the Microstructure 87 (196)
4 Diffraction Line-Profile Analysis 89 (38)
Eric J. Mittemeijer
Udo Welzel
4.1 Introduction 89 (1)
4.2 Instrumental Broadening 90 (4)
4.2.1 Determination of the Instrumental 92 (1)
Profile Using a Reference (Standard)
Specimen
4.2.2 Determination of the Instrumental 92 (1)
Profile by Calculus
4.2.3 Subtraction/Incorporation of the 93 (1)
Instrumental Broadening
4.3 Structural, Specimen Broadening 94 (17)
4.3.1 Measures of Line Broadening: 94 (2)
Fourier Series Representation of
Diffraction Lines
4.3.2 Column Length/Crystallite Size 96 (2)
and Column-Length/Crystallite-Size
Distribution
4.3.3 Microstrain Broadening 98 (1)
4.3.3.1 Assumptions in Integral-Breadth 99 (1)
Methods
4.3.3.2 Assumptions in Fourier Methods 100 (1)
4.3.3.3 Microstrain-Broadening 101 (3)
Descriptions Derived from a
Microstructural Model
4.3.4 Anisotropic Size and 104 (2)
Microstrain(-Like) Diffraction-Line
Broadening
4.3.5 Macroscopic Anisotropy 106 (1)
4.3.6 Crystallite Size and Coherency of 106 (5)
Diffraction
4.4 Practical Application of Line-Profile 111 (11)
Analysis
4.4.1 Line-Profile Decomposition 111 (1)
4.4.1.1 Breadth Methods 111 (4)
4.4.1.2 Fourier Methods 115 (1)
4.4.1.3 Whole Powder-Pattern Fitting 116 (1)
4.4.2 Line-Profile Synthesis 116 (1)
4.4.2.1 General Strain-Field Method 117 (1)
4.4.2.2 Specific Microstructural 118 (2)
Models: Whole Powder-Pattern Modeling
(WPPM) and Multiple Whole-Profile
Modeling/Fitting (MWP)
4.4.2.3 General Atomistic Structure: 120 (2)
the Debye Scattering Function
4.5 Conclusions 122 (5)
References 123 (4)
5 Residual Stress Analysis by X-Ray 127 (28)
Diffraction Methods
Christoph Genzel
Ingwer A. Denks
Manuela Klaus
5.1 Introduction 127 (2)
5.2 Principles of Near-Surface X-Ray 129 (12)
Residual Stress Analysis
5.2.1 Fundamental Relations 129 (1)
5.2.2 Concepts of Diffraction Data 130 (1)
Acquisition: Angle-Dispersive and
Energy-Dispersive Modes
5.2.3 Concepts of Strain Depth 131 (1)
Profiling: LAPLACE and Real Space
Approach
5.2.3.1 Definition of the Information 131 (2)
Depth
5.2.3.2 Depth Profiling in the LAPLACE 133 (3)
Space
5.2.3.3 Depth Profiling in Real Space 136 (3)
5.2.3.4 "Fixed" versus "Variable Depth" 139 (2)
Methods
5.3 Near-Surface X-Ray Residual Stress 141 (10)
Analysis by Advanced and Complementary
Methods
5.3.1 Residual Stress Depth Profiling 141 (1)
in Multilayered Coating Systems
5.3.1.1 The "Equivalence Thickness" 141 (3)
Concept
5.3.1.2 The "Stress Scanning" Method 144 (3)
5.3.2 Residual Stress Gradient 147
Evaluation in Surface-Treated Bulk
Samples
5.3.2.1 Fixed Depth Analysis in the 142 (7)
Real Space: Direct Access to σ (z)
5.3.2.2 Residual Stress Evaluation in 149 (2)
the LAPLACE Space: From σ (τ)
to σ (z)
5.4 Final Remarks 151 (4)
References 153 (2)
6 Stress Analysis by Neutron Diffraction 155 (18)
Lothar Pintschovius
Michael Hofmann
6.1 Introductory Remarks 155 (1)
6.2 Fundamentals of the Technique 155 (4)
6.2.1 The d0-Problem 156 (1)
6.2.2 Macrostrains versus Microstrains 157 (1)
6.2.3 Strain Tensors 158 (1)
6.2.4 Reflection Line Broadenings 158 (1)
6.3 Instrumentation 159 (5)
6.3.1 Angle-Dispersive Instruments 159 (1)
6.3.1.1 Monochromators 159 (1)
6.3.1.2 Beam-Defining Optics 160 (1)
6.3.1.3 Detectors 161 (1)
6.3.1.4 Auxiliaries 162 (1)
6.3.2 Time-of-Flight Instruments 162 (2)
6.3.3 Special Instruments 164 (1)
6.4 Capabilities 164 (2)
6.4.1 Types of Materials 164 (1)
6.4.2 Spatial Resolution 164 (1)
6.4.3 Penetration Depth 165 (1)
6.4.4 Accuracy 166 (1)
6.4.5 Throughput 166 (1)
6.5 Examples 166 (7)
6.5.1 Railway Rail 166 (101)
6.5.2 Weldments 267
6.5.3 Ceramics 168 (2)
6.5.4 Composite Materials 170 (1)
References 170 (3)
7 Texture Analysis by Advanced Diffraction 173 (48)
Methods
Hans-Rudolf Wenk
7.1 Introduction and Background 173 (4)
7.2 Synchrotron X-Rays 177 (13)
7.2.1 General Approach 177 (1)
7.2.2 Hard Synchrotron X-Rays 178 (2)
7.2.3 In situ High-Pressure Experiments 180 (3)
7.2.4 From Diffraction Images to 183 (5)
Orientation Distribution
7.2.5 Opportunities with the Laue 188 (1)
Technique
7.2.6 Synchrotron Applications 188 (2)
7.3 Neutron Diffraction 190 (14)
7.3.1 General Comments 190 (3)
7.3.2 Monochromatic Neutrons 193 (1)
7.3.3 Polychromatic Time-of-Flight 194 (3)
(TOF) Neutrons
7.3.4 Special Techniques 197 (1)
7.3.5 Data Analysis for TOF Neutrons 198 (4)
7.3.6 Neutron Applications 202 (1)
7.3.6.1 Grain Statistics 202 (1)
7.3.6.2 Polymineralic Rocks 202 (1)
7.3.6.3 In situ Experiments and Phase 203 (1)
Transformations
7.3.6.4 Magnetic Textures 204 (1)
7.4 Electron Diffraction 204 (8)
7.4.1 Transmission Electron Microscope 204 (1)
7.4.2 Scanning Electron Microscope (SEM) 205 (4)
7.4.3 EBSD Applications 209 (1)
7.4.3.1 Misorientations 209 (1)
7.4.3.2 In situ Heating 209 (1)
7.4.3.3 In situ Deformation 210 (1)
7.4.3.4 3D Mapping 211 (1)
7.4.3.5 Residual Strain Analysis 211 (1)
7.5 Comparison of Methods 212 (1)
7.6 Conclusions 213 (8)
Acknowledgments 214 (1)
References 214 (7)
8 Surface-Sensitive X-Ray Diffraction 221 (38)
Methods
Andreas Stierle
Elias Vlieg
8.1 Introduction 221 (3)
8.1.1 Structure Determination by X-Ray 223 (1)
Diffraction
8.2 X-Ray Reflectivity 224 (3)
8.3 Bragg Scattering in Reduced 227 (22)
Dimensions (Crystal Truncation Rod
Scattering)
8.3.1 Thin-Film Diffraction 227 (3)
8.3.2 Surface Diffraction from 230 (2)
Half-Infinite Systems
8.3.2.1 Surface Relaxations 232 (2)
8.3.2.2 Surface Reconstructions and 234 (3)
Fourier Methods
8.3.2.3 Surface Roughness 237 (2)
8.3.2.4 Vicinal Surfaces 239 (1)
8.3.2.5 Two-Layer Roughness Model for 240 (5)
Growth Studies
8.3.2.6 Interface Diffraction 245 (2)
8.3.2.7 The Specular Rod 247 (2)
8.4 Grazing Incidence X-Ray Diffraction 249 (3)
8.5 Experimental Geometries 252 (2)
8.6 Trends 254 (5)
Acknowledgments 255 (1)
References 255 (4)
9 The Micro- and Nanostructure of Imperfect 259 (24)
Oxide Epitaxial Films
Alexandre Boulle
Florine Conchon
Rene Guinchretiere
9.1 The Diffracted Amplitude and Intensity 260 (2)
9.1.1 Diffracted Amplitude 260 (1)
9.1.2 Diffracted Intensity 261 (1)
9.2 The Correlation Volume 262 (7)
9.2.1 Crystallite Size and Shape 262 (3)
9.2.2 Crystallite Size Fluctuations 265 (2)
9.2.3 Crystallite Shape Fluctuations 267 (2)
9.3 Lattice Strain 269 (5)
9.3.1 Statistical Properties 269 (3)
9.3.2 Spatial Properties 272 (2)
9.4 Example 274 (3)
9.5 Strain Gradients 277 (2)
9.5.1 Background 277 (1)
9.5.2 Strain Profile Retrieval 277 (1)
9.5.3 Example 278 (1)
9.6 Conclusions 279 (4)
References 281 (2)
Part III Phase Analysis and Phase 283 (76)
Transformations
10 Quantitative Phase Analysis Using the 285 (36)
Rietveld Method
Ian C. Madsen
Nicola V.Y. Scarlett
Daniel P. Riley
Mark D. Raven
10.1 Introduction 285 (1)
10.2 Mathematical Basis 286 (9)
10.2.1 Rietveld-Based Methods 286 (4)
10.2.2 Improving Accuracy 290 (2)
10.2.3 Correlation with Thermal 292 (3)
Parameters
10.3 Applications in Minerals and 295 (23)
Materials Research
10.3.1 Crystallization from 295 (3)
Hydrothermal Solutions
10.3.2 Energy-Dispersive Diffraction 298 (3)
10.3.2.1 Application of EDD to the 301 (3)
Study of Inert Anodes for Light Metal
Production
10.3.3 Quantitative Phase Analysis in 304 (2)
Mineral Exploration
10.3.3.1 Particle Statistics 306 (1)
10.3.3.2 Preferred Orientation 306 (1)
10.3.3.3 Microabsorption 306 (1)
10.3.3.4 Identification of Mineral 307 (1)
Types and Polytypes
10.3.3.5 Element Substitution and Solid 307 (1)
Solution
10.3.3.6 Severe Peak Overlap 308 (1)
10.3.3.7 Poorly Crystalline Components 309 (1)
10.3.3.8 Clay and Disordered Structures 309 (1)
10.3.4 The Reynolds Cup 310 (2)
10.3.5 Use of QPA-Derived Kinetics in 312 (1)
the Design of Novel Materials
10.3.5.1 Methodologies for Synthesis 312 (1)
Optimization Using QPA
10.3.5.2 Design and Synthesis 312 (4)
Optimization of Novel Materials:
Mn+1AXn Phases
10.3.5.3 In situ Differential Thermal 316 (2)
Analysis (DTA) Using QPA
10.4 Summary 318 (3)
Acknowledgments 318 (1)
References 318 (3)
11 Kinetics of Phase Transformations and of 321 (38)
Other Time-Dependent Processes in Solids
Analyzed by Powder Diffraction
Andreas Leineweber
Eric J. Mittemeijer
11.1 Introduction 321 (2)
11.2 Kinetic Concepts 323 (14)
11.2.1 Process Rates 323 (4)
11.2.2 The Temperature Dependence of 327 (1)
the Process Rate
11.2.2.1 Arrhenius-Type Temperature 327 (1)
Dependence of the Rate Constant k(T)
11.2.2.2 Non-Arrhenius-Type Process 328 (2)
Kinetics
11.2.3 Rate Laws for Isothermally 330 (1)
Conducted Processes
11.2.3.1 mth-Order Kinetics of 330 (1)
Homogeneous Processes
11.2.3.2 Johnson-Mehl-Avrami-Kolmogorov 331 (1)
Kinetics of Heterogeneous Phase
Transformations
11.2.3.3 Grain Growth and Ostwald 332 (1)
Ripening
11.2.3.4 Volume-Diffusion-Controlled 333 (1)
Processes
11.2.3.5 Order-Disorder-Related 333 (3)
Processes
11.2.4 Rate Laws for Nonisothermally 336 (1)
Conducted Processes
11.3 Tracing the Process Kinetics by 337 (2)
Powder Diffraction
11.4 Mode of Measurement: In Situ versus 339 (3)
Ex Situ Methods
11.5 Types of Kinetic Processes and 342 (12)
Examples
11.5.1 Local Composition in Solid is 342 (1)
Retained
11.5.1.1 Reconstructive, Polymorphic 342 (4)
Transformations α → β
11.5.1.2 Polymorphic Transformations of 346 (1)
Order-Disorder Character and Related
Processes
11.5.1.3 Polymorphic Transformations of 347 (2)
Polytypic Character
11.5.1.4 Grain Growth 349 (1)
11.5.2 Local Concentration Variations 350 (1)
within Isolated Solid Systems
11.5.2.1 Precipitation Processes 350 (1)
11.5.2.2 Solid-State Reaction between 351 (1)
Different Phases
11.5.3 Composition Changes in Solids by 352 (2)
Reaction with Fluid Matter
11.6 Concluding Remarks 354 (5)
References 354 (5)
Part IV Diffraction Methods and 359 (160)
Instrumentation
12 Laboratory Instrumentation for X-Ray 361 (38)
Powder Diffraction: Developments and
Examples
Udo Welzel
Eric J. Mittemeijer
12.1 Introduction: Historical Sketch 361 (4)
12.2 Laboratory X-Ray Powder Diffraction: 365 (23)
Instrumentation
12.2.1 Overview 365 (1)
12.2.2 Laboratory X-Ray Sources; 365 (1)
Monochromatization
12.2.2.1 X-Ray Sources 365 (3)
12.2.2.2 Monochromatization/Filtering 368 (2)
12.2.3 Debye-Scherrer (-Hull) Geometry 370 (1)
12.2.4 Monochromatic Pinhole Techniques 371 (1)
12.2.5 (Para-)Focusing Geometries 371 (1)
12.2.5.1 Seemann-Bohlin Geometry 372 (1)
12.2.5.2 Bragg-Brentano Geometry 373 (3)
12.2.6 Instrumental Aberrations of 376 (1)
(Para-)Focusing Geometries
12.2.7 Parallel-Beam Geometry 377 (1)
12.2.7.1 Polycapillary Collimators 378 (1)
12.2.7.2 X-Ray Mirrors 379 (2)
12.2.7.3 X-Ray Mirrors versus X-Ray 381 (2)
Lenses; Comparative Discussion
12.2.7.4 Instrumental Aberrations of 383 (1)
Parallel-Beam Geometry
12.2.8 Further, Recent Developments 384 (1)
12.2.8.1 Two-Dimensional Detectors 384 (3)
12.2.8.2 Microdiffraction 387 (1)
12.2.8.3 Energy-Dispersive Diffraction 388 (1)
12.3 Examples 388 (11)
12.3.1 Parallel-Beam Diffraction Methods 388 (1)
12.3.1.1 High Brilliance, Parallel-Beam 388 (1)
Laboratory X-Ray Source
12.3.1.2 Applications 389 (2)
12.3.2 Two-Dimensional Diffraction 391 (3)
Methods
Acknowledgments 394 (1)
References 394 (5)
13 The Calibration of Laboratory X-Ray 399 (40)
Diffraction Equipment Using NIST Standard
Reference Materials
James P. Cline
David Black
Donald Windover
Albert Henins
13.1 Introduction 399 (1)
13.2 The Instrument Profile Function 400 (11)
13.3 SRMs, Instrumentation, and Data 411 (7)
Collection Procedures
13.4 Data Analysis Methods 418 (5)
13.5 Instrument Qualification and 423 (13)
Validation
13.6 Conclusions 436 (3)
References 437 (2)
14 Synchrotron Diffraction: Capabilities, 439 (30)
Instrumentation, and Examples
Gene E. Ice
14.1 Introduction 439 (2)
14.2 The Underlying Physics of 441 (4)
Synchrotron Sources
14.2.1 Storage Ring Sources 441 (4)
14.2.2 Free-Electron Lasers and Other 445 (1)
Emerging X-Ray Sources
14.3 Diffraction Applications Exploiting 445 (11)
High Source Brilliance
14.3.1 Microdiffraction 446 (3)
14.3.1.1 Microdiffraction Example 1: 449 (2)
Stress-Driven Sn Whisker Growth
14.3.1.2 Microdiffraction Example 2: 451 (1)
Damage in Ion-Implanted Si
14.3.1.3 Other Microdiffraction 452 (1)
Applications
14.3.2 Surface and Interface Diffraction 452 (1)
14.3.2.1 Surface Diffraction Example 1: 453 (2)
Truncation Rod Scattering (TRS)
14.3.2.2 Surface Diffraction Example 2: 455 (1)
Surface Studies of Phase
Transformations in Langmuir-Blodgett
Films
14.4 High Q-Resolution Measurements 456 (1)
14.5 Applications of Tunability: Resonant 456 (9)
Scattering
14.5.1 Resonant Scattering Example 1: 458 (3)
Multiple Anomalous Diffraction, MAD
14.5.2 Resonant Scattering Example 2: 3 461 (3)
λ Determination of Local
Short-Range Correlation in Binary Alloys
14.5.3 Resonant Scattering Example 3: 464 (1)
Determination of Magnetic Structure and
Correlation Lengths
14.6 Future: Ultrafast Science and 465 (4)
Coherence
14.6.1 Coherent Diffraction 466 (1)
14.6.2 Ultrafast Diffraction 466 (1)
References 467 (2)
15 High-Energy Electron Diffraction: 469 (22)
Capabilities, Instrumentation, and Examples
Christoph T. Koch
15.1 Introduction 469 (1)
15.2 Instrumentation 470 (4)
15.2.1 Fundamentals 470 (2)
15.2.2 Diffraction Modes in a TEM 472 (2)
15.2.3 Femtosecond Electron Diffraction 474 (1)
15.3 Electron Diffraction Methods in the 474 (12)
TEM
15.3.1 Precession Electron Diffraction 474 (2)
(PED)
15.3.2 Quantitative Convergent-Beam 476 (1)
Electron Diffraction (QCBED)
15.3.3 Large-Angle Convergent-Beam 477 (1)
Electron Diffraction (LACBED)
15.3.4 Large-Angle Rocking-Beam 478 (4)
Electron Diffraction (LARBED)
15.3.5 Diffraction Tomography 482 (1)
15.3.6 Real-Space Crystallography 482 (1)
15.3.7 Coherent Diffractive Imaging 483 (2)
(CDI) with Electrons
15.3.8 Mapping Strain by Electron 485 (1)
Diffraction
15.4 Summary and Outlook 486 (5)
Acknowledgment 486 (1)
References 486 (5)
16 In Situ Diffraction Measurements: 491 (28)
Challenges, Instrumentation, and Examples
Helmut Ehrenberg
Anatoliy Senyshyn
Manuel Hinterstein
Hartmut Fuess
16.1 Introduction 491 (1)
16.2 Instrumentation and Experimental 492 (5)
Challenges
16.2.1 General Considerations 492 (1)
16.2.2 Absorption 493 (1)
16.2.3 Detection Challenges 494 (3)
16.3 Examples 497 (22)
16.3.1 Electrochemical In Situ Studies 497 (5)
of Electrode Materials and In Operando
Investigations of Li-Ion Batteries
16.3.2 In situ Studies of Piezoceramics 502 (13)
in Electric Fields
Acknowledgment 515 (1)
References 515 (4)
Index 519